

Mercury Renewables (Jennings O'Donovan)

Firlough Green Hydrogen

Preliminary Discharge & Assimilative Capacity Assessment (pDACA)

Project no. 603676 (07) pDACA

RSK GENERAL NOTES

Project No.: 603676

Title:	Preliminary Discharge & As	similative Capacity	Assessment (pDACA)
Client:	Mercury Renewables		
Office:	RSK Dublin		
Status:	(06)		
Author	Sven Klinkenbergh	Technical reviewer	
Signature	Soup?	Signature	
Date:	29/06/2023	Date:	

Revision control sheet						
Revision ref.	Date	Reason for revision				
00		Initial Draft				
01		Revised Draft				
02	17/02/2023	Issue Final				
03	06/05/2023	Revision				
04	02/06/2023	Revision				
05	28/06/2023	Revision				
06	29/06/2023	Revision				

RSK (Ireland) Ltd (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report assumes that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

CONTENTS

1		6
	1.1 Scope of Work	6
	1.2 Statement of Authority	6
	1.3 Sources of Information	7
	1.4 Limitations	7
2	METHODOLOGY	8
	2.1 Watercourse Nomenclature	8
	2.2 Monitoring – Timing	8
	2.3 Monitoring – Locations	8
	2.4 Water Sampling & Field Hydrochemistry	8
	2.5 Laboratory Analytical Hydrochemistry	9
	2.6 Reported River Water Quality	9
	2.7 Preliminary River Flow Data	9
	2.8 Groundwater Quality & Levels	9
	2.9 Conceptual Process Water Demand and Wastewater Treatment Assessment	10
	2.10 Preliminary Effluent Discharge & Assimilative Capacity Assessment	10
	2.10.1 Assessment of Variable Conditions	12
	2.11 Consultation Meeting with EPA	13
3	RESULTS & INTERPRETATION	15
	3.1 Catchments & Surface Water Features	15
	3.1.1 WFD Catchments	15
	3.1.2 Subject River / Catchment	15

RSK

6	REF	EREN	CES	. 37
	5.4	Detaile	ed Design & Specification	. 36
	5.3	Detaile	ed Monitoring Plan	. 34
	5.2	Detaile	ed Discharge & Assimilative Capacity (DACA)	. 34
	5.1	Proces	ss Source Water, Wastewater Management & Discharge	. 31
5	DIS	CUSSI	ON & RECOMMENDATIONS	. 31
4	COI	NCLUS	SIONS	. 28
	3.7	Result	ts Interpretation & Commentary	. 26
	3.6	Prelim	ninary Assimilative Capacity Assessment	. 25
	3.5	Proces	ss Wastewater Discharge Flows	. 23
	3.4	Proces	ss Wastewater Quality	. 22
		3.3.2	Field & Analytical Surface Water Quality	.21
		3.3.1	Water Framework Directive	.21
	3.3	River I	Hydrochemistry	.21
		3.2.5	Groundwater Data	. 20
		3.2.4	Anecdotal Data	. 20
		3.2.3	Rainfall Data	. 19
		3.2.2	Baseline Sampling & Flow Measurements	. 19
		3.2.1	Available and Adapted River Flow Data	. 17
	3.2	River I	Flow Data	. 17
		3.1.3	Neighbouring River/s / Catchment	. 16

LIST OF TABLES

 Table 1 - Hydrotool River Flow Data (34-1372)

LIST OF PLATES

Plate 1 - Subject HYDRO Catchment 34_622

Plate 2 – Neighboring HYDRO Catchment 34_1372

Ref. 603676 pDACA 06 Mercury Renewables PDACA – Firlough Green Hydrogen, Co. Sligo

Plate 3 - Mapped Springs (Ref. Minerex 3131-043 rev1)

Plate 4 – Aquifer Vulnerability over HYDRO Catchments (Ref. EPA / GSI, 2022)

LIST OF APPENDICES

Appendix A – Figures

Figure 1 - Site Location & Surface Water Discharge Data

Figure 2 - Proposed Development Layout

Figure 3 - SW Monitoring Locations

Figure 4 – Conceptual Process & Treatment Train Flow Diagram

Appendix B – Groundwater & Surface Water Database

Appendix C – Preliminary Assimilative Capacity Assessment

1 INTRODUCTION

RSK Ireland was commissioned by Mercury Renewables to carry out a Preliminary Discharge & Assimilative Assessment for wastewater discharge associated with the Proposed Development i.e., Hydrogen Plant.

The Hydrogen Plant Site is situated in Co. Sligo, on the Co. Sligo and Co. Mayo border, 5.5 kilometres west of Bunnyconnellan, Co. Mayo

This report is accompanied by the following Appendices;

Appendix A – Figures

- Figure 1 Site Location
- Figure 2 Proposed Development
- Figure 3 Site Location & Surface Water Baseline Locations
- Figure 4 Conceptual Process & Treatment Train Flow Diagram

Appendix B – Groundwater, Surface Water & Wastewater Database

Appendix C – Assimilative Capacity Calculations

The Proposed Development and specifically the Hydrogen Plant is described in EIAR Chapter 2: Project Description (Figure 2 - Proposed Development Layout).

1.1 Scope of Work

The scope of work completed under this report includes;

- Establishing a good understanding of the wastewater streams, their volume / discharge rates, and likely contaminant loading.
- Identify the potential variability in wastewater volumes, discharge rates and contaminant loading.
- Evaluate and propose conceptual wastewater management, treatment and discharge of wastewater at the site.
- Estimate and qualify likely impact of discharging to receiving surface waters.
- Consider and evaluate potential alternatives.
- Identify significant data gaps if applicable.
- Make recommendations for the proposed development in terms of further assessment required, monitoring, and wastewater management.

1.2 Statement of Authority

RSK (Ireland) Ltd. (RSK), part of RSK Group, is a consultancy providing environmental services in the hydrological, hydrogeological and other environmental disciplines. The company and group provide consultancy to clients in both the public & private sectors. More information can be found at www.rskgroup.com. The principal members of the RSK EIA team involved in this assessment include the following persons;

 Project Manager & Lead Author: Sven Klinkenbergh – B.Sc. (Environmental Science), P.G. Dip. (Environmental Protection) – Principal Environmental Consultant with c. 10 years' experience in hydrology, hydrogeology and geology disciplines.

1.3 Sources of Information

The following sources of information were reviewed:

- EPA Maps (Accessed December 2022) (EPA, 2022)
- EPA HydroTool (Accessed December 2022) (EPA, 2022)
- EPA Hydronet (Accessed December 2022) (EPA, 2022)
- GSI Maps (Accessed December 2022) (GSI, 2022)

1.4 Limitations

RSK cannot be held responsible for any omissions, misrepresentations, errors for inaccuracies with the supplied information. New information, revised practices or changes in legislation may necessitate the re-interpretation of the report in whole or in part.

All opinions expressed are based upon current design standards and policies in force at the date of this report. These standards may be subject to change with the passage of time.

The opinions expressed herein are intended to provide general guidance as to how a problem related to a particular development might be resolved. Given the paucity of the original information, and the often-indirect nature of information received, they should not be relied upon as absolute or definitive guidance as to any particular solution. Such conclusions can only sensibly be arrived at upon detailed design.

As a consequence of the above, RSK. will not be held liable for any consequential losses, howsoever caused, as a consequence of inaccurate missing, incomplete, or erroneous data contained in this report, nor any data capable of being subject to variable interpretation by means of its generalised nature.

2 METHODOLOGY

2.1 Watercourse Nomenclature

Catchment and watercourse / surface water nomenclature is in line with names stated on EPA/WFD maps and datasets.

Non-mapped features follow the nomenclature of the source for information including appended reports.

2.2 Monitoring – Timing

Monitoring included initial site walkover and 1 no. round of surface water baseline sampling round.

Initial site walkover was conducted on 27th October 2022.

Surface Water Monitoring Event no. 1 was conducted on 2nd December 2022

2.3 Monitoring – Locations

Baseline sampling was carried out at 2 no. locations;

- FHP-SW1 (Upstream)
- FHP-SW2 (Downstream)

Surface water monitoring locations are presented in Appendix A – Figure 3.

2.4 Water Sampling & Field Hydrochemistry

Sampling was carried out in line with RSK Ireland standard practices and quality control checks.

During the sampling event, the physical characteristics of the river channel, and associated feeder drains (if applicable), as well as river water depth (3 no. locations), and estimated velocity were recorded.

Field hydrochemistry was assessed during the sampling event. The following field hydro chemical parameters were assessed and recorded.

- Colour
- Estimated Total Suspended Solids
- Odour
- Obvious Contaminants (e.g. Hydrocarbon)
- Temperature
- pH
- Electrical Conductivity

2.5 Laboratory Analytical Hydrochemistry

Surface water samples obtained during the monitoring event were sent to an accredited laboratory for analytical hydro chemical analysis.

Parameters analysed included key parameters with relevant Environmental Quality Standards (EQSs) associated, including, inter alia;

- Biological Oxygen Demand (BOD)
- Total Suspended Solids (TSS)
- Nutrients N (Nitrogen) and P (Phosphorous) compounds.
- Metals

Full parameter list is presented in Appendix \mathbf{B} – Groundwater & Surface Water Database.

2.6 Reported River Water Quality

Desktop assessment included consultation with EPA, GSI and other relevant opensource maps. Data available on surface and groundwater quality including WFD 2016-2021 Status and latest cycle Risk classifications, etc.

2.7 Preliminary River Flow Data

Subject river discharge rate (Q_R) was assessed by on site and desktop assessments.

On site flow or discharge rate assessments were conducted as part of Surface Water (SW) sampling event (02/12/2022). Data obtained during the SW sampling event included data on depth, width, velocity (measured by float distance over time, average of three measurements), qualification of river bed characteristics and friction coefficients. Sectional area of the river water at the sampling point is calculated

((Depth 1 * (Width / 3))/2)+ (Depth 1 * (Width / 3))+ ((Depth 1 * (Width / 3))/2)

Sectional area (m^2) * Velocity (m/s) = Discharge (Q) (m^3/sec) .

Note: This is considered in low accuracy discharge assessment undertaken at a single point in time.

Desktop assessment included consultation with EPA Water, EPA HydroTool and EPA Hydronet maps, assessing data availability associated with the subject catchment, and to ascertain the Q95%ile discharge rate for the subject river, and to infer a likely Q95%ile discharge rare for the subject river at the approximate location of the proposed discharge point.

2.8 Groundwater Quality & Levels

Available data obtained as part of the Minerex Pump Test (Minerex Environmental, 2023, Groundwater Supply Report) includes results of detailed hydrogeological desktop assessment, mapping of hydrogeological features including springs, borehole geological logging, long duration water logging, and groundwater environmental and groundwater characterisation analytical laboratory data.

Groundwater hydro-chemical data is used by the design team to provide indicative wastewater quality, and for interpretation of surface water hydro-chemical quality and hydrological / discharge properties of the subject river.

2.9 Conceptual Process Water Demand and Wastewater Treatment Assessment

The Hydrogen Plant will require volumes of treated water for use. The proposed facility design team (Black and Veatch) have provided indicative predictive wastewater quality data, and predicted water demand and peak production flow rates. The Hydrogen Plant will require volumes of wastewater to be treated water for discharge to surface waters. Using data provided (Black and Veatch etc) this report assesses the water balance, and treatment train required at the site in order to achieve minimal impact to the receiving environment.

Due to the uncertain nature of the wind resource (among other factors) that determines renewable energy production from a project such as the Wind Farm, the industry uses probability-based forecasting methods to estimate future production.

These methods are presented as probability density functions, for example a normal distribution or bell curve. The P50 probability representing an energy generation forecast that the relevant wind farm will at least achieve 50% of the time. As the mean average, this represents the most likely outcome for the Wind Farm.

Conversely, assuming the Hydrogen Plant would operate at 100% output for a year carries a probability of 0% as the Wind Farm will not operate at 100% utilisation for a full year based on collected wind data supplemented with long term data sets and due to normal operation and maintenance down time requirements at either the Wind Farm or the Hydrogen Plant.

Figures used in this document on process water, and wastewater discharge requirements of the Hydrogen Plant, are based on P50 production values of the Wind Farm.

2.10 Preliminary Effluent Discharge & Assimilative Capacity Assessment

The Hydrogen Plant will discharge treated trade effluent to surface waters. The discharge of trade effluent is a licenced activity, and considering the nature and scale of the Hydrogen Plant the proposed activities are likely to be listed on the First Schedule of the EPA Act. In the event that an IE licence is not required, at minimum the Hydrogen Plant will require a Section 4 Water Protection Act Discharge Licence from the local authority.

Anticipating the requirement for a licence application, this report assesses the likely / predicted effluent discharge quality, quantity or discharge rate, and the assimilative capacity of the receiving surface water, as well as screening requirements set out in relevant guidance for the purposes of applying for licence to discharge to surface waters.

Relevant guidance includes EPA (2018) Licence Application Form Guidance – Industrial Emissions (IE), Integrated Pollution Control (IPC) and Waste. This guidance document Ref. 603676 PDACA 05

includes for the assessment and characterisation of emissions, namely; Emissions to Surface Water. The guidance lists items of information required for completing application templates, including requirements to establish the nature and quality of the emission or effluent. For the purpose of this preliminary assessment the following items are sited (this does not detail the full list of requirements, the following is sited for the purposes of assessing the potential impact as part of EIA);

Within the template document you are required to provide emission point details including:

- 1. Details of the emission source.
- 2. The typical days usage/year.
- 3. The measures to reduce/minimise/prevent emissions (where an environmental quality standard consideration require measures stricter than BAT the measures are to be included in bold)
- 4. The receiving water type (River', 'Ditch', 'Estuary', 'Lake', 'Land Drain' or 'Other' (where 'Other' is selected please enter a description).
- 5. The receiving water code.
- 6. Identification of the relevant parameters emitted to water
- 7. The proposed emission limits and sampling/monitoring arrangements.

To identify the relevant chemical parameters you are required to consider:

- 1. Substances listed in the Schedule of EPA (Industrial Emissions)(Licensing) Regulations 2013, S.I. No. 137 of 2013.
- 2. The fate of materials/substances, intermediates, products and by products used or produced through the process particularly substances of very high concern, substances carrying the Hazard statement H400 to 413 (hazardous to the aquatic environment) and hazardous substances with damaging effects on sensitive plants and ecosystems.
- 3. Any reaction substances likely to appear as a result of treatment or natural breakdown processes with damaging effects on sensitive plants and ecosystems.
- 4. Any substances with the potential to cause odour nuisance off site.
- 5. List I and List II substances listed in the Annex to EU Directive 2006/11/EC (as amended).

To determine the emission levels the applicant must consider the following:

1. Environmental quality standards and objectives.

The EPA 2018 guidance lists other items to consider and assess, including developing detailed procedures in line with EPA Best Available Techniques (BAT). These items are not addressed under this report. However, under the scope of this report, and to assess the potential impact for the purposes of EIA, this report will also look at guidance relating discharge licence applications to local authorities which sets out methodologies for assessing and qualifying the assimilative capacity of the receiving surface water.

It is noted that the receiving river is on the Co. Sligo and Co. Mayo Border, however this preliminary assessment of key criteria including assimilative capacity calculations has been carried out following Sligo County Council (SCC) (2011) *Guidance on Applying for a Discharge Licence to Surface Waters.*

Information required will include;

- 1. Plans and other particulars to describe the premises, drainage system and any works, apparatus or plant from which the effluent is to be discharged;
- 2. Identify the waters to which the discharge is to be made and the point of discharge;
- 3. Particulars of the nature, chemical composition, anticipated temperature, volume and rate of discharge;
- 4. Details of the proposed method of any treatment of the effluent and the period or periods during which the effluent is to be discharged;
- 5. A general description of the process or activity giving rise to the discharge;
- 6. The results of any investigation made into the impact of the discharge on the receiving waters;
- 7. Particulars of the quality of the receiving waters. This is to include as a minimum, a description of the chemical and bacteriological condition of the receiving water at the point of discharge.
- 8. Particulars of the volume and flow rate of receiving waters, indicating 95% ile flow and Dry Weather Flow (DWF);
- 9. Details of the effects of the discharge on the receiving waters, which is to address the chemical and ecological qualities of the receiving water.

Other information required will include;

- 1. A biological quality assessment / ecological assessment of the receiving waters;
- 2. Toxicity testing of the effluent;
- 3. Details of proposals for dealing with sludge.

SCC Guidance on Applying for a Discharge Licence to Surface Waters provides manual Appendix C – Assimilative Capacity and Mass Balance Calculations which details procedures to calculate;

- Assimilative Capacity for pollutant.
- Percentage of Assimilative Capacity used based on expected conditions.
- Mass Balance for estimating pollutant impact downstream based on expected conditions.

These calculations are used to preliminary assess the assimilative capacity of the subject river to receive treated trade effluent without significantly adversely affecting the Environmental Quality Standards (Surface Water Regulations reference limits) and Water Framework Directive (WFD) status of the receiving surface water network.

2.10.1 Assessment of Variable Conditions

In order to assess the likely impact of the proposed discharge, guidance sited stipulates that the assimilative capacity must be assessed using representative

Q95%ile and Dry Weather Flow Rate, the latter being 'worst case' scenario.

Q95% ile represents flow in cubic meters per second which was equalled or exceeded 95% of the flow record, and is a significant low flow parameter particularly relevant in the assessment of river quality consent conditions.

Due to limited available data on river discharge rates at the Hydrogen Plant Site, and in line with relevant guidance, the discharge values for the subject river will be inferred using data available for suitable neighbouring catchments. Furthermore, this assessment will look at variable effluent and river discharge rates under 3 no. scenarios, including the Base Case on which the conclusion of this report are based.

- Scenario A Using Inferred Constant River HHYDRO Tool Q95%ile and Monthly Average Discharge Rate
- Scenario B Using Inferred Variable River Q95%ile (HHYDRO Tool Derived) and Monthly Average Discharge Rate, combined with Wastewater Storage and NO Restricted Discharge Rate
- Scenario C (Base Case) Using Inferred Variable River Q95%ile (HHYDRO Tool Derived) and Monthly Average Discharge Rate, combined with Wastewater Storage and WITH Restricted Discharge Rate

2.11 Consultation Meeting with EPA

The project team engaged with the EPA and a pre-application consultation meeting which took place on the 29th March 2023 The Hydrogen Plant water balance, treatment and discharge was discussed. Main points raised include the following in summary;

- The EPA noted that the proposal to abstract water from the ground for the hydrogen plant would be subject to the Water Environment (Abstractions and Associated Impoundments) Act 2022 given the volume of water required(By law, if you abstract 25 cubic meters (25,000 litres) of water or more per day, you must register this abstraction with the EPA).
- The EPA noted that an Industrial Emissions Licence would be required for the hydrogen plant under the Industrial Emissions Directive.
- The EPA noted that it is likely that the production of hydrogen would come under classification 5.13 of the First Schedule of the EPA Act 1992 as amended.
- The EPA noted that BAT (Best Available Techniques) and BREF (Best Available Technique Reference Document) details would need to be included in the licence applications.
- The EPA noted that the constructed wetlands and vegetated swales must be sealed by an impermeable liner.
- The EPA noted that the discharge design must be based on a worst-case scenario (i.e. dry weather flow).
- The EPA noted that there need to be separate sampling points for the process

and foul water treatment systems.

These items have been considered in the preliminary design and in this assessment of the Hydrogen Plant in terms of identifying any likely significant impacts at EIA stage.

3 RESULTS & INTERPRETATION

3.1 Catchments & Surface Water Features

3.1.1 WFD Catchments

WFD Catchment = 34, Moy & Killala Bay WFD Sib-Catchment = 34_11, Leaffony_SC_010 WFD River Sub Basin = RATHROEEN STREAM_010

3.1.2 Subject River / Catchment

EPA HydroTool Catchment = 34_622

Subject River = DOOYEAGHNY_or_CLOONLOUGHAN_010

HYDRO Catchment Data = No

National Water Monitoring Station Data =

Yes, mapped station, *DOOYEAGHNY_or_CLOONLOUGHAN - Interstitial, 1st Br u/s from May_34 R conf.* However, no data available (Contact EPA / County Council).

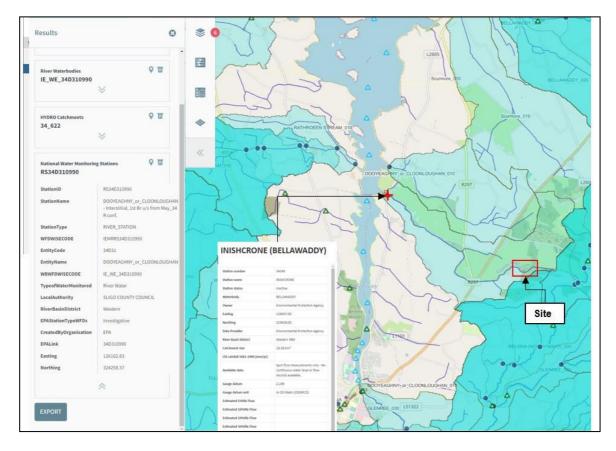


Plate 1 - Subject HYDRO Catchment 34_622

Ref. 603676 PDACA 05 Mercury Renewables PDACA – Firlough Green Hydrogen, Co. Sligo


3.1.3 Neighbouring River/s / Catchment

EPA HydroTool Catchment = 34_1372

Neighbour River = NEWTOWN 34

HYDRO Catchment Data = Yes. HYDRO catchment node is positioned at outfall of HYDRO catchment. River Flow Estimate – Hydrotool data available

Hydrotool Model Data = The NATQ95% ile is reported to be 0.014 m³/sec, or 14 l/sec.

National Water Monitoring Station Data = No

Plate 2 – Neighbouring HYDRO Catchment 34_1372

Ref. 603676 PDACA 05 Mercury Renewables PDACA – Firlough Green Hydrogen, Co. Sligo

3.2 River Flow Data

3.2.1 Available and Adapted River Flow Data

Guidance on calculating the assimilative capacity indicates that the EPA Hydrotool data from a neighbouring catchment can be used, provided the catchment size and soils types are similar (**App A – Figure 1 - Site Location & SW Discharge Data**).

The HYDRO tool river flow data available in the neighbouring catchment is presented in the **Table 1.** The HYDRO Node associated with the neighbouring catchment is positioned at the outfall of the catchment, therefore represents the entire or 100% HYDRO catchment. When using the below data to infer a river flow (Q) rate at the proposed site Discharge Point (DP) of the Hydrogen Plant Site, it is important to consider the position of the DP relative to the position of the HYDRO node being used to infer data.

The DP is position approximately 66% upstream of the HYDRO catchment outfall / Hydrotool data node, i.e. approximately 33% of the subject catchment is available to contribute to river discharge at DP.

HYDRO Catchments	Site		Neighbour		Neighbour
RWSEG_CD	34_622		34_1372		34_1372
NODE_ID	34_622_6		34_1372_2		34_1372_2
CatchmentArea_km2	6.281		5.254		5.254
National Water Monitoring Stations	Yes		No		No
Data	No (?)		n/a		n/a
River Flow Estimates - Hydrotool	No		Yes		Hypothetical
Location in catchment / Area %	n/a		100%		33%
Hydrotool Data					
RWSEG_CD			34_1372		34_1372
CatchmentArea_Km2			5.254		1.73382
Easting			126220		Site
Northing			324920		Site
FARL			1	33%	0.33
NATQ1 (m ³ /s)			0.551	33%	0.18183
NATQ5 (m ³ /s)			0.346	33%	0.11418
NATQ10 (m ³ /s)			0.257	33%	0.08481
NATQ20 (m ³ /s)			0.172	33%	0.05676
NATQ30 (m ³ /s)			0.128	33%	0.04224
NATQ40 (m ³ /s)			0.099	33%	0.03267
NATQ50 (m ³ /s)			0.077	33%	0.02541
NATQ60 (m ³ /s)			0.06	33%	0.0198
NATQ70 (m ³ /s)			0.046	33%	0.01518
NATQ80 (m ³ /s)			0.032	33%	0.01056
NATQ90 (m ³ /s)			0.02	33%	0.0066
NATQ95 (m ³ /s)		100%	0.014	33%	0.00462
NATQ99 (m ³ /s)			0.008	33%	0.00264
NATAMF (m ³ /s)			0.116	33%	0.03828
NATMMF1 (m ³ /s)			0.205	33%	0.06765
NATMMF2 (m ³ /s)			0.168	33%	0.05544
NATMMF3 (m ³ /s)			0.126	33%	0.04158
NATMMF4 (m ³ /s)			0.092	33%	0.03036
NATMMF5 (m ³ /s)			0.07	33%	0.0231
NATMMF6 (m ³ /s)			0.056	33%	0.01848
NATMMF7 (m ³ /s)			0.048	33%	0.01584
NATMMF8 (m ³ /s)			0.062	33%	0.02046
NATMMF9 (m ³ /s)			0.063	33%	0.02079
NATMMF10 (m ³ /s)			0.105	33%	0.03465
NATMMF11 (m ³ /s)			0.171	33%	0.05643
NATMMF12 (m ³ /s)			0.171	33%	0.06303

Table 1 – HYDRO Catchment & Adapted Data

Ref. 603676 PDACA 05

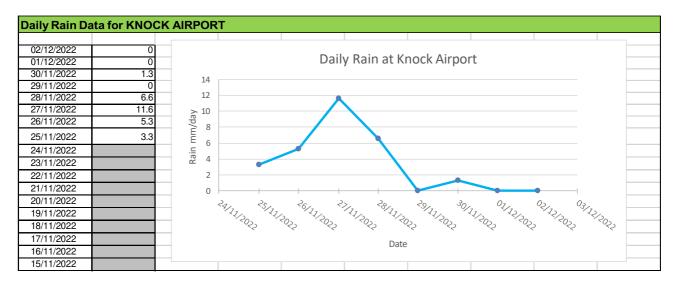
HYDRO Catchments	Site	Neighbour		Neighbour
RAINFALL_SAAR		1102.212	33%	363.7298235
EVAPOTRANSPIRATION		485.083	33%	160.0775372
POORLYDRAINED		0.814	33%	0.268502913
PEAT		33.781	33%	11.14759471
CONDUIT_KARST		0	33%	0

The NATQ95% ile is reported to be 0.014 m3/sec, or 14 l/sec. Assuming (inferred estimate) 33% of that discharge flow rate is indicative of the NATQ95% ile at the proposed DP, a Q95% ile value of 0.0046 m3/sec, or 4.6 l/sec will be used for this assessment.

3.2.2 Baseline Sampling & Flow Measurements

Peak river flow measurements / estimates at SW sampling locations are presented in Appendix \mathbf{B} – Groundwater & Surface Water Database, and summarised as follows;

- FHP-SW1 (02/12/2022) = 32.3 l/sec
- FHP-SW2 (02/12/2022) = 65.8 l/sec


Weather conditions on the day of sampling (02/12/2022) and a number of days preceding the event were dry. However, the two months preceding the event were exceptionally wet, as presented in the following tables.

3.2.3 Rainfall Data

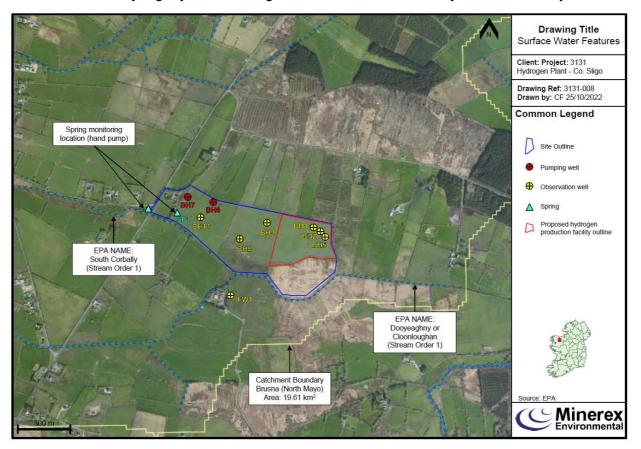
Rainfall data for the days and months preceding the Surface Water (SW) sampling event is presented in the following tables.

Monthly Long Term Average (LTA) rainfall is also presented, this data is included and used in preliminary assimilative capacity assessments presented in Appendix C – Preliminary Assimilative Capacity Assessment.

Table 2 – Daily Rain at Knock Airport (Up to 02/12/2022)

Table 3 - Monthly	v Rain Data	for Knock Air	rport (Ref. Met	Fireann)
	y mann Data			

Monthly	Monthly Rain Data for KNOCK AIRPORT up to 21-dec-2022												
Total rain	Total rainfall in millimetres for KNOCK AIRPORT												
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									Annual				
2022	72.7	186.8	61.5	77.2	101.7	128.8	39.8	59.4	97	217.5	172.8	35.3	1250.5
2021	129.3	118.7	118.9	41.6	115.6	50.2	122.8	117.7	147.7	166.4	105.7	129.9	1364.5
2020	122.5	277.4	117.6	21	30.8	126.8	159.6	104.9	75.4	178.8	129.3	161.8	1505.9
2019	93.2	99.2	182.4	96.5	78.1	114.2	85.9	207.6	116.7	104.6	103	174	1455.4
LTA	135.4	102.9	118.1	81.6	92	91.5	95.7	107.9	111.3	141.3	134.2	141.4	1353.3


3.2.4 Anecdotal Data

Anecdotal evidence (Pers. Comm. Land Owner) suggests that the subject river, Dooyeaghny or Cloonloughan Stream is in constant flow year round.

3.2.5 Groundwater Data

Review of available data, including recent Minerex (2022) Groundwater Supply Assessment (Ref. 3131-043 Rev1)

The site is located in the Moy and Killala Bay catchment, Leaffony sub catchment and the Dooyeaghny or Cloonloughan sub basin. The Dooyeaghny or Cloonloughan stream flows westwards along the southern boundary of the site. A groundwater spring SP1 rises at the south west corner of the site. This is likely one source of the South Corbally stream which is mapped as rising at the south west boundary of the site flowing westwards before joining the Dooyeaghny or Cloonloughan stream which eventually flows to the Moy.

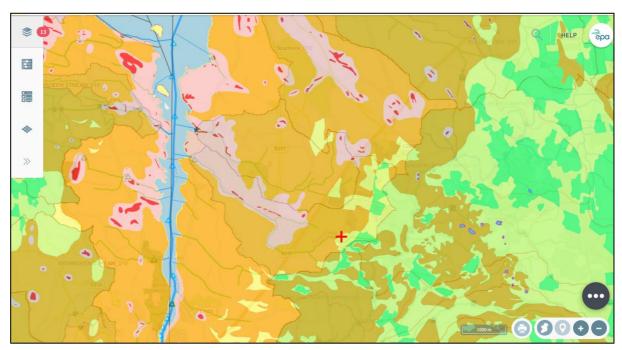


Plate 3 - Mapped Springs (Ref. Minerex 3131-043 rev1)

The SP1 and SP2 springs discharge to the Corbally river, not the subject river, however the presence of springs in combination with; anecdotal evidence of constant flow, and surface water hydrochemistry (namely elevated conductivity), the river discharge is likely comprised of a relatively steady groundwater fed baseflow.

Note on Aquifer Vulnerability. Between the two HYDRO catchments under review (subject and neighbour) there is a notable difference in mapped aquifer vulnerability, particularly in the top c. 33% of the subject catchment. The general area of catchments downstream of the proposed DP range in extreme to high vulnerability. The headwater 33% of the subject catchment is mapped as ranging from high to low vulnerability. This would likely impact on the actual flow duration curve for the subject catchment, and potentially a more buffered response to rainfall compared to that of the neighbouring catchment i.e. a more constant flow rate with additional infiltration and groundwater flow times, compared to the neighbouring catchments which could be more 'flashy' than the subject catchment and therefore could potentially have a lower Q95%ile flow rate as a result.

Plate 4 – Aquifer Vulnerability over HYDRO Catchments (Ref. EPA / GSI, 2022)

3.3 River Hydrochemistry

3.3.1 Water Framework Directive

Subject River = DOOYEAGHNY_or_CLOONLOUGHAN_010 WFD Status 2016-2021 = Good (Assessment Technique: Modelling) WFD Risk 3rd Cycle = Review River Q Values = No Data

3.3.2 Field & Analytical Surface Water Quality

Field and laboratory analytical analysis data for samples obtained during Surface Water (SW) sampling events are presented in Appendix \mathbf{B} – Groundwater & Surface Water Database.

Laboratory results for SW samples obtained at FHP-SW1 and FHP-SW2 (02/12/2022) have been screened against relevant reference limits including Surface Water Regulations for Good water quality (95%ile).

Results indicate good water quality with the exception of Nitrates (c. 4.1 mg/l) which exceeds the SW Regs Good (95%ile) reference limit of 2.6 mg/l.

Electrical Conductivity (EC) is noted to be elevated (c. 596 uS/cm). This is not in exceedance of reference limits, however it is likely an indication that the subject river is potentially impacted by poor quality agricultural runoff, and/or receiving a relatively high volume of groundwater discharge i.e. groundwater fed river.

3.4 **Process Wastewater Quality**

Hydrochemical data for groundwater samples obtained by Minerex for the Groundwater Supply Assessment, and estimated waste water composition are presented in Appendix B.

Preliminary design details provided by Black & Veatch include the treatment of raw groundwater and production of demineralised water for use in the Hydrogen Plant electrolyser (Appendix A – Figure 4). The process water will be treated with an efficiency of approximately 70% and produce a process wastewater equating to approximately 30% volume of raw water used (assuming groundwater only, no supplementary rainwater). The hydro chemical signature of the resulting wastewater is therefore likely to be similar to hydrochemical signature of baseline groundwater samples, but with elevated concentrations. Black and Veech have provided expected wastewater composition based on baseline groundwater samples (Appendix B), however it is important to note the potential for variable groundwater chemistry, particularly during and after periods of groundwater extraction over prolonged periods of time.

As a result the expected composition of the wastewater, or effluent includes several substances which will be listed in the Schedule of EPA (Industrial Emissions)(Licensing) Regulations 2013, S.I. No. 137 of 2013, or listed in the Annex to EU Directive 2006/11/EC (as amended), including general groundwater properties such as nitrogen or phosphorous based compounds i.e. nutrients with the potential to impact on oxygen availability among others. With the potential for variable groundwater quality, and the potential for sources of contaminants within the zone of contribution associated with the Hydrogen Plant groundwater extraction point, other contaminants have the potential to be introduced to the system.

The system will be dosed with some cleaning and anti-scaling products. Black and Veech provide the following information:

Anti-scalants

- Example data sheets for proprietary products BV has used on previous projects for maintenance of treatment systems membranes (Reverse Osmosis).
- These would be expected to be dosed into the system at less than 10mg/L, $_{\rm Ref.\ 603676\ PDACA\ 05}$

typically 5 mg/L

- Used to prevent mineral scale formation on the RO membrane surface
- The data sheets show that there are no ecotoxicity effects at the maximum dosing level
- Storage of antiscalants would be contained to prevent spills

Sodium Bisulphite

- Example data sheets for proprietary products BV has used on previous projects for maintenance of treatment systems
- This would be expected to be dosed into the system at less than 5mg/L, typically 2-3mg/L
- Datasheet shows it is a non-hazardous solution commonly used as a waste water dichlorination agent. High concentrations will contribute to elevated chemical oxygen demand in aquatic environments, however, maximum dosing is far below exposure limits.
- Storage of sodium bisulphite would be contained to prevent spills

It is understood that Sodium Bisulphite will be used only if mains water is used as a raw water source. This is unlikely to happen except for exceptional circumstances where the preferred raw water sources, groundwater and rain water, are not available.

These products are not likely to cause significant adverse impact at the low concentrations they will be dosed into the system, which will further reduce following on site primary and secondary treatment. However, in their raw form these products have the potential to cause a more significant impact, and in line with typical safety datasheets associated with these products, the use of these products will be managed and monitored, and accidental release avoided through appropriate measures, including diverting away from drainage systems. The products that will be used for the Hydrogen Plant system will be not include any substances which are persistent and/or bioaccumulate.

3.5 **Process Wastewater Discharge Flows**

Preliminary water balance assessment data provided by Black & Veatch is presented in the following table.

Predicted Wastewater Rate per Month									
Month	Avg Waste Water (m3)	m3/day	m3/hour	l/hour	l/sec				
Jan	1,726.89	57.563	2.398	2398.458	0.666				
Feb	2,029.27	67.642	2.818	2818.431	0.783				
Mar	1,550.09	51.670	2.153	2152.903	0.598				
Apr	1,269.43	42.314	1.763	1763.097	0.490				
Мау	1,281.02	42.701	1.779	1779.194	0.494				
Jun	1,222.71	40.757	1.698	1698.208	0.472				
Jul	880.17	29.339	1.222	1222.458	0.340				
Ref. 603676 F	PDACA 05								

Table 4 - Predicted Wastewater Rate per Month

Predicted Wastewater Rate per Month									
Month	Avg Waste Water (m3)	m3/day	m3/hour	l/hour	l/sec				
Aug	1,165.98	38.866	1.619	1619.417	0.450				
Sep	1,287.65	42.922	1.788	1788.403	0.497				
Oct	1,707.79	56.926	2.372	2371.931	0.659				
Nov	1,556.83	51.894	2.162	2162.264	0.601				
Dec	1,855.96	61.865	2.578	2577.722	0.716				
			(
Min	880.17			, -					
Max	2,029.27	67.64	2.82	2,818.43	0.78				
Mean	1,461.15	48.70	2.03	2,029.37	0.56				
Total	17,533.79								

Peak average wastewater equates to 2.82 m3/hour or c. 0.78 l/sec (February).

The above wastewater values are included in Appendix C – Preliminary Assimilative Capacity Assessment and are used as the discharge flow rate in preliminary assimilative capacity assessments.

It must be noted that the above predicted discharge rates, or wastewater volumes arising from the Hydrogen Plant are derived assuming; the Hydrogen Plant is operating on 100% wind take from the Wind Farm in line with predicted potential wind energy per month (50th percentile (20yr) average).

Figure 4 – Conceptual Process & Treatment Train Flow Diagram

3.6 Preliminary Assimilative Capacity Assessment

A preliminary assimilative capacity assessment has been completed (Appendix C). Biological Oxygen Demand (BOD) has been assessed under 3 no. scenarios.

- Scenario A Using;
 - Inferred Constant River HHYDRO Tool Q95%ile and
 - Monthly Average Wastewater Discharge Rate, combined with
 - Wastewater Storage and <u>NO</u> Restricted Discharge Rate

Results:

Assimilative Capacity = Pass

Mass Balance = Pass

Comment = At inferred Q95 of c. 4.6 l/sec each month, based on available baseline data, and envisaged effluent loading, discharge will not have a significant adverse impact on surface water quality.

- Scenario B Using;
 - Inferred Variable River Q95%ile or and
 - Monthly Average Wastewater Discharge Rate, combined with
 - Wastewater Storage and <u>NO</u> Restricted Discharge Rate

Results:

Assimilative Capacity = Fail in July (Indicative Dry Weather Flow).

Mass Balance = Pass

Comment = At inferred variable Q95 or indicative seasonal discharge rate l/sec each month, based on available baseline data, and envisaged effluent loading, discharge will have a significant adverse impact on surface water quality during some months of the year.

- Scenario C (Base Case) Using;
 - Inferred Variable River Q95%ile (HHYDRO Tool Derived) and
 - Monthly Average Wastewater Discharge Rate, combined with
 - Wastewater Storage and <u>WITH</u> Restricted Discharge Rate

Results:

Assimilative Capacity = Pass

Mass Balance = Pass

Comment = At inferred variable Q95 or indicative seasonal discharge rate l/sec each month, based on available baseline data, and envisaged effluent loading, discharge will not have a significant adverse impact on surface water quality during some months of the year.

3.7 **Results Interpretation & Commentary**

The following points are noted;

- i. The proposed Base Case, allowing excess wastewater storage enables regulating of discharge rates. Reducing peak flow by 50% (Appendix C, Scenario C) will result in pass for the July in contrast to Scenario B discussed previously. This Base Case indicates that the proposed mitigation will be sufficient in managing discharge loading of assessed contaminants and achieving Environmental Quality Standards for river water quality and maintaining WFD status.
- ii. Assuming very low flow conditions during dryer months, discharge at peak rates (no utilization of designed wastewater storage) and discharging in line with indicative discharge licence limits (BOD 10mg/l used in assessment, with an EQS water quality reference of 5mg/l), the discharge has the potential to significantly impact on surface water quality i.e. loading with contaminants with a result of elevating downstream concentrations above environmental quality standards (Salmonid Regs reference limits). Results (Appendix C) indicate that the assimilative capacity test failed, but the mass balance passed, under the Scenario B in July. This highlights the requirement for dynamic mitigation and the monitoring and regulation of both discharge and river properties in the proposed Base Case above.
- iii. This indicates the requirement to manage and reduce discharge during excessively dry conditions. Monitoring will be required to specify and actively manage the treatment and discharge system.
- iv. Wastewater volumes generated at the site will be variable month to month depending on and in line with potential wind energy production, the utilisation of the energy and the utilisation capacity at the Hydrogen Plant Site. As a result, the Hydrogen Plant will have largest volumes of wastewater generated in February, with lowest volumes in summer months. This is also generally in line with rain fall trends through out year.
- v. The wastewater volumes provided for this assessment are based on fully installed capacity of the Hydrogen Plant operating on 100% wind take of the Firlough Wind Farm (assuming 50th percentile (20yr) average generation forecast). These rates will not be achieved until the installed capacity of the Hydrogen Plant reaches 80MWs. Loading and rates of discharge from the Hydrogen Plant Site are expected to be linear from no installed Hydrogen Plant capacity up to 80MW of installed Hydrogen Plant capacity, on which this report is based.

The following points are noted;

i. Wastewater volumes generated at the site will be variable month to month depending on and in line with potential wind energy production, the utilisation

ii. of the energy and the utilisation capacity at the Hydrogen Plant . As a result, the Hydrogen Plant will have largest volumes of wastewater generated in February, with lowest volumes in summer months. This is also generally in line with rain fall trends through out year.

The wastewater volumes provided for this assessment are peak rates based on utilising the output of the Wind Farm (Modelled using P50 data).

4 CONCLUSIONS

With reference to assumptions, results and interpretation outlined in the previous sections, this preliminary Discharge and Assimilative Capacity report assesses the potential for adverse impact on the receiving surface water network, addresses the minimum requirements for assessing discharge to surface water in line with licence application procedures, and with a view to quantifying and qualifying potential impact, identifying data gaps and scoping of further detailed assessment. In line with the assessment approach outlined in **Section 2.10**, the following items are addressed;

Plans and other particulars to describe the premises, drainage system and any works, apparatus or plant from which the effluent is to be discharged;

Preliminary project layout and design presented in Figure **2** - Proposed Development Layout. Detailed design to be completed pending planning application consent and will include full details on the proposed facility and ancillary infrastructure.

Conceptual water management and treatments train/s discussed Section 3 and presented in Figure **4** – Conceptual Process & Treatment Train Flow Diagram.

Identify the waters to which the discharge is to be made and the point of discharge;

Receiving surface waters are identified, discussed Section 3, and presented in;

Figure 1 - Site Location

Figure 2 - Proposed Development Layout

Figure **3** - SW Monitoring Locations

Particulars of the nature, chemical composition, anticipated temperature, volume and rate of discharge;

As discussed under this report, envisaged contaminant loading in effluent is likely to be relatively low. At a minimum, wastewater treatment and management on site will achieve quality in line with typical / prescribed discharge licence limits. Refer to Appendix B Database. Additional detail will be required with the discharge licence application.

Details of the proposed method of any treatment of the effluent and the period or periods during which the effluent is to be discharged;

Source water will be treated as part of the hydrogen production process, the wastewater arising from this process will treated by means of constructed wetland and regulated discharge rates. Any particular contaminant which is observed to be excessively high in incoming source water will be targeted with specific wastewater treatment.

A detailed wastewater management plan is to be established. Additional detail will be required with the discharge licence application.

A general description of the process or activity giving rise to the discharge;

Raw water treatment for hydrogen production.

The results of any investigation made into the impact of the discharge on the receiving waters;

Results of preliminary Discharge Assimilative Capacity in the subject river to receive trade effluent discharge from the proposed facility is presented in Appendix C – Preliminary Assimilative Capacity Assessment.

 Scenario A - Using Inferred Constant River HHYDRO Tool Q95%ile and Monthly Average Discharge Rate

Results:

Assimilative Capacity = Pass

Mass Balance = Pass

Comment = At inferred Q95 of c. 4.6 l/sec each month, based on available baseline data, and envisaged effluent loading, discharge will not have a significant adverse impact on surface water quality.

 Scenario B - Using Inferred Variable River Q95%ile (HHYDRO Tool Derived) and Monthly Average Discharge Rate, combined with Wastewater Storage and NO Restricted Discharge Rate

Results:

Assimilative Capacity = Fail in July (Indicative Dry Flow conditions).

Mass Balance = Pass

Comment = At inferred variable Q95 or indicative seasonal discharge rate l/sec each month, based on available baseline data, and envisaged effluent loading, discharge will have a significant adverse impact on surface water quality during some months of the year.

• Scenario C (Base Case) - Using Inferred Variable River Q95%ile (HHYDRO Tool Derived) and Monthly Average Discharge Rate, combined with Wastewater Storage and WITH Restricted Discharge Rate

Results:

Assimilative Capacity = Pass

Mass Balance = Pass

Comment = At inferred variable Q95 or indicative seasonal discharge rate l/sec each month, based on available baseline data, and envisaged effluent loading, discharge will not have a significant adverse impact on surface water quality during some months of the year.

Particulars of the quality of the receiving waters. This is to include as a minimum, a description of the chemical and bacteriological condition of the receiving water at the point of discharge.

Appendix B. . Additional detail will be required with the discharge licence application

Particulars of the volume and flow rate of receiving waters, indicating 95% ile flow and Dry Weather Flow (DWF);

This is inferred using data for a neighbouring catchment. Additional detail will be required with the discharge licence application

Details of the effects of the discharge on the receiving waters, which is to address the chemical and ecological qualities of the receiving water.

Provided additional detail will be obtained and an effective wastewater management plan is implemented, in line with the recommendations provided here width (Section 5), the discharge of trade effluent at the site is unlikely to have a significant adverse impact on the receiving surface water quality and associated ecological attributes.

5 DISCUSSION & RECOMMENDATIONS

The following recommendations are made following preliminary assessment observations, and in line with requirements of relevant guidance for discharge to surface waters.

5.1 Process Source Water, Wastewater Management & Discharge

The following is recommended with a view to managing wastewater quality and volumes on site, and minimizing potential for discharge to have adverse impacts on receiving surface water quality;

- Groundwater quality will be monitored on a routine / continuous basis with a view to
 establishing site specific baseline water quality ranges managing source water and
 process water chemistry.
- Surface water quality will be monitored on a routine / continuous basis with a view to establishing site specific Q95 and baseline water quality ranges, and managing source water and process water chemistry.
- Groundwater levels will be monitored continuously.
- Surface water levels and discharge rate in the receiving river will be monitored continuously.
- Water sources (groundwater and harvested rainwater) will be utilized and combined at the beginning of the process to minimize contaminant loading in the process source water generally with a view to minimizing loading on downstream wastewater treatment systems.
- Groundwater abstraction volumes will be monitored and recorded continuously. It is likely that the development will exceed abstraction volumes of 25m³/day. Therefore, the facility will be required to register with the EPA and follow any associated guidance or legislated responsibility.
- 'Water Environment (Abstractions and Associated Impoundments) Act 2022', the bill sets out a process for the registration, assessment and licensing of both surface water and groundwater abstractions.
 - All abstractions, including group water schemes, that reach a minimum daily threshold of abstraction (25m3 per day) will be required to register its abstraction in a similar fashion. Those that abstract 2,000m3 or more will automatically require an abstraction licence.
 - EPA will assess abstractions and if deemed necessary due to potential environmental risk certain development will require EIA. EIAs for these abstractions will reviewed at least once every six years.
 - For groundwater, recharge times and impacts on connected surface waters are among the elements assessed.

- There is onus on stakeholders to ensure sustainable use of water, and in light of climate change and potential for extreme meteorological conditions, to work towards water sustainability gains.
- In line storage throughout the process will facilitate buffering flow through and discharge rates. This includes wastewater storage with a view to buffering inflow and regulating discharge from wastewater treatment works on site.
- Process water treatment will include at minimum the proposed design features i.e. Filtration, Reverse Osmosis, and Deionization. The process water treatment facility will be designed to include additional treatment features where required, for example; with the potential for increasing concentrations of contaminants being extracted from the Zone of Contribution (ZOC) over time, the engineered process source water treatment facility will be equipped when and if required to remove elevated concentrations of any particular contaminant which may overload or adversely impact on performance of downstream wastewater treatment facilities.
- All engineered water and wastewater treatment systems will be designed and specified by competent, qualified and experienced engineers.
- Two wastewater streams identified i.e. process wastewater and foul sewage arising from welfare facilities (toilets, canteen etc.) will be dealt with separately initially.
- Wastewater will be treated and managed through passive but managed nature-based solutions, including constructed wetlands (Note; engineered treatment solutions for waste water will be included upstream in the process source water treatment facilities.
- All nature based water and wastewater treatment systems (constructed wetlands) will be designed and specified by competent, qualified and experienced environmental engineers. It is recommended that this item is executed at an early stage of the detailed design. Constructed wetlands will be designed with particular characteristics and ecological attributes based on the expected contaminant loading, achievable retention time, and performance / discharge quality objectives. The wetland systems will likely take some time to become established and therefore will be required at an early stage of the construction stage of the development. The detailed assessment and design of constructed wetlands will follow the Department of Agriculture, Fisheries and Food guidance document (2011), Minimum Specification for Integrated Constructed Wetlands and Ancillary Works.
- Without advanced assessment of the site hydrogeological properties, including soil infiltration rates and potential for natural attenuation of contaminants, it is recommended that constructed wetlands are lined and do not permit infiltration or recharge to groundwater bodies..
- Foul sewage will undergo primary treatment by septic tank. The septic tank will be emptied by tanker in line with standard practices. The outfall of the septic tank will be transferred to the foul sewage constructed wetland (FCW) for secondary treatment. The FCW will be positioned in the northeast corner of the site and will be approximately 80m2 to facilitate the optimal retention time of c. 12 days to adequately treat the welfare effluent loading. The outfall of the FCW will be combined with process wastewater in storage before being transferred to the second constructed wetland configuration.

- The outfall of the foul constructed wetland (FCW) will be monitored and sampled in line with sampling frequency and reporting requirements set out in the discharge licence conditions, discussed in later points.
- The combined wastewater will be pumped to a secondary series of process constructed wetlands (PCW). The remaining area on the site will be utilized to maximize area of PCW and associated retention time. This includes a linear feature within the 5m easement along the southern boundary. Based on initial high level calculations, with the approximate space left available on site, and with regulation of loading and discharge rates, the PCW will achieve a minimum of 6 days retention time. This is lower than the required retention time for loading in line with foul sewage arising from welfare facilities, however the loading from process wastewater will be significantly less than that of welfare wastewater of sewage under normal circumstances*.

*Potential for variable source water / groundwater quality

- Wastewater storage will be adequately sized (e.g., c. 1500m³) to achieve ability to significantly reduce (e.g. 50%) discharge rates to surface water, or in emergency situations to completely halt discharging for a minimum duration of one month. Emergency situations in the context of this report includes observing prolonged drought conditions and prolonged low dry weather discharge rates in the receiving river, for example; under Scenario B described in this report, discharging under such conditions could significantly adversely impact on water quality in the receiving river. Therefore, this is an important piece to consider in the management of wastewater and effluent discharge.
- The production of hydrogen on an industrial scale is an activity listed in First Schedule
 of the Environmental Protection Agency Act, 1992 (as amended) and therefore an
 Industrial Emissions Licence may be required and the Developer will apply to the EPA
 for same. To the extent that the EPA do not consider the production of hydrogen at
 the facility to be on an industrial scale or otherwise not require an Industrial Emissions
 licence then the Developer will apply for a discharge license from the relevant local
 authority (Sligo Co. Co. / Mayo Co. Co.). The facility will be operated in accordance
 with all industrial emissions and discharge licences applicable to the facility and the
 discharge of waste water to the adjacent water course.

5.2 Detailed Discharge & Assimilative Capacity (DACA)

Pending consent for the Proposed Development, during the detailed design and post consent stage, and prior to construction / operational phase this preliminary Discharge & Assimilative Capacity Assessment will be refined and updated through further assessment (based on the framework established under this report, including EPA guidance for applying for IPC licence if required) of surface water discharge and additional baseline chemistry analysis will be carried out and wastewater management plan will be refined. Continuous monitoring through the life of the project will be used to review and update methodologies wherever appropriate on an ongoing basis, that is; the detailed water and wastewater management plan which will be developed prior to the construction phase of the development will be live document and procedures will be amended where relevant based on ongoing continuous and/or routine monitoring.

This will follow the requirements set out in EPA 2018 Licence Application Form Guidance including following relevant Best Available Techniques (BAT).

5.3 Detailed Monitoring Plan

As discussed and mentioned throughout this report, monitoring will be required at numerous locations to facilitate and ensure adequate management of a dynamic process in terms of expected source water, wastewater, and receiving water qualities. Detailed monitoring plans will be developed for the following;

- Input and Sources
 - Groundwater levels will be monitored continuously.
 - Ambient groundwater chemistry will be monitored in boreholes. As per likely licence conditions, a minimum of quarterly monitoring of groundwater chemistry will be required.
 - Rainfall at the site will be monitored continuously.
 - Harvested Rainwater & Storm Water volumes.
 - The use of storm water as a raw material requires pre-treatment via oil water separation during storage to prevent contamination of process by hydrocarbons. This will require regular monitoring and maintenance in line with standard practices.
 - Continuous monitoring of water sources being input to the facility and process water treatment works. Establishing site specific water quality ranges will be necessary to ensure consistent and appropriate loading in wastewater.
- Process Water Treatment & Output
 - It is assumed that the engineered water and wastewater treatment facilities will require a degree of continuous monitoring as standard. However at minimum the works will monitor flows and concentrations of key parameters in wastewater streams. This will be carried out on an ongoing basis to ensure that the water treatment systems are functioning adequately, and to monitor

the contaminant loading in wastewater transferred to nature based treatment systems downstream i.e. constructed wetlands.

- Welfare and Foul Sewage
 - Septic tanks will require monitoring and maintenance in line with standard practices.
 - The outfall of the Foul Constructed Wetland (FCW) will be monitored continuously for key chemical parameters and physically sampled in line with likely licence conditions.
 - FCW outfall volumes will be monitored on a continuous basis with a view to monitoring chemistry of combined FCW outfall and Process Wastewater.
- Wastewater Treatment
 - Volumes within wastewater buffer storage will be monitored continuously.
 - Quality data obtained from process water treatment and FCW outfall monitoring will be utilized to infer water quality within wastewater buffer storage, if chemistry in storage is monitored directly. This will be done on a continuous basis for key parameters.
 - The outfall / pumped volume from wastewater storage to the Process Constructed Wetland (PCW) will be monitored continuously.
 - Health and performance of all constructed wetlands will be monitored on an ongoing basis.
- Discharge & River
 - Routine and continuous monitoring of surface water quality in line with licence conditions and advised Environmental Quality Standard (EQS) chemical parameters including but not limited to; temperature, pH, turbidity, electrical conductivity, dissolved oxygen, nitrogen, phosphorous, and other key EQS parameters. This will be done with continuous monitoring equipment for a select key parameters and those which can practically be monitored in situ in real time. Other parameters which require physical sampling e.g. Biological Oxygen Demand (BOD) will be monitored on a routine basis, with high frequency e.g. weekly to inform the development of the detailed water management plan, that is; adequate data to establish representative baseline concentration trends of key parameters and to adjust assimilative capacity calculations accordingly.
 - Monitoring described above will be conducted at three monitoring locations on the river; upstream (FHP-SW-US), the discharging effluent at the discharge point (DP) or at a representative (of end of pipe) sampling location on the discharge line, and downstream (FHP-SW-DS) of development. Continuous real time monitoring data obtained at these locations will be used to manage and calibrate the wastewater and discharge regime at the site.
 - Discharge rates in the river will be monitored on a continuous basis. Data obtained will be used to establish a hydrograph and associated discharge (Q) percentiles (similar to EPA HydroTool) for the river at the point of monitoring

i.e. DP. Dray weather flow will also be qualified. Continuous real time monitoring data will be used to manage and calibrate the wastewater and discharge regime at the site e.g. restricting discharge during dry weather discharge rates will inadequate assimilative capacity.

- Overall Environmental Impact
 - All data obtained will be compiled, reviewed, assessed and used to inform ongoing review and assessment of overall impacts to the receiving environment in terms of sustainable use and interaction e.g. ongoing monitoring of effects on groundwater quality and levels, ongoing monitoring of river water discharge rates and quality.
- Reference Values
 - With reference to EPA 2018 Licence Application Form Guidance, full suite of relevant parameters will be identified, screened, and emission limit levels proposed as part of licence application procedures.

5.4 Detailed Design & Specification

The detailed design of all water and wastewater facilities and functions, including monitoring stations will be carried out by qualified and experienced engineers specializing in respective fields and following relevant standards and guidance associated with each. These elements include;

- Groundwater abstraction and ancillary works.
- Rain and storm water harvesting and ancillary works
- Source water storage and ancillary works.
- Process source water treatment and ancillary works.
- Welfare foul sewage systems including septic tanks and ancillary works.
- Wastewater buffer storage and ancillary works.
- Constructed wetland systems and ancillary works.
- Discharge points and ancillary works.
- Environmental and process systems monitoring, long-term and real time data and systems management, environmental assessment and interpretation.

6 **REFERENCES**

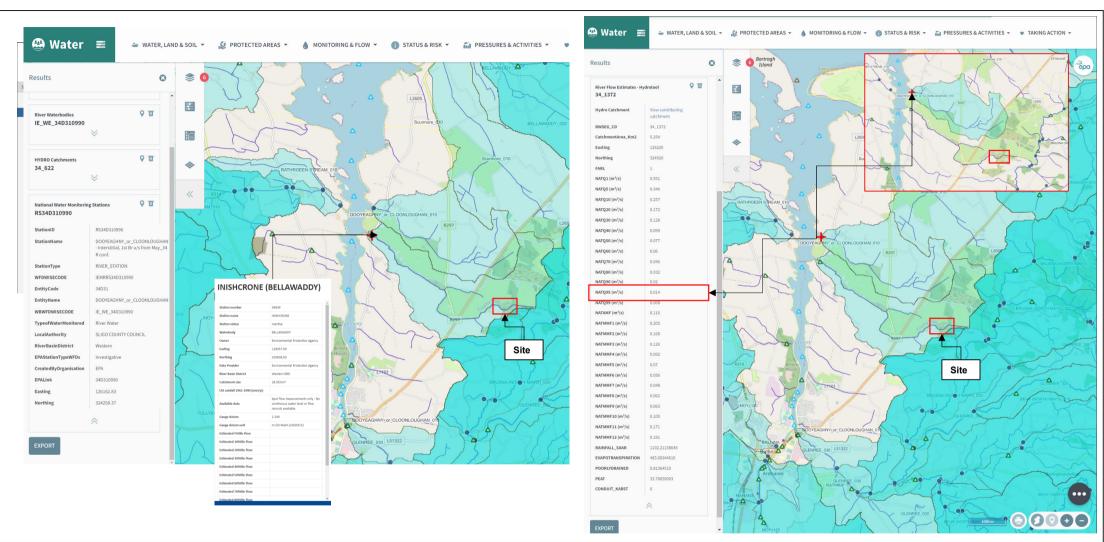
EPA (2018) Licence Application Form Guidance

Sligo County Council (No Date) *Guidance on Applying for a Discharge Licence to Surface Waters*

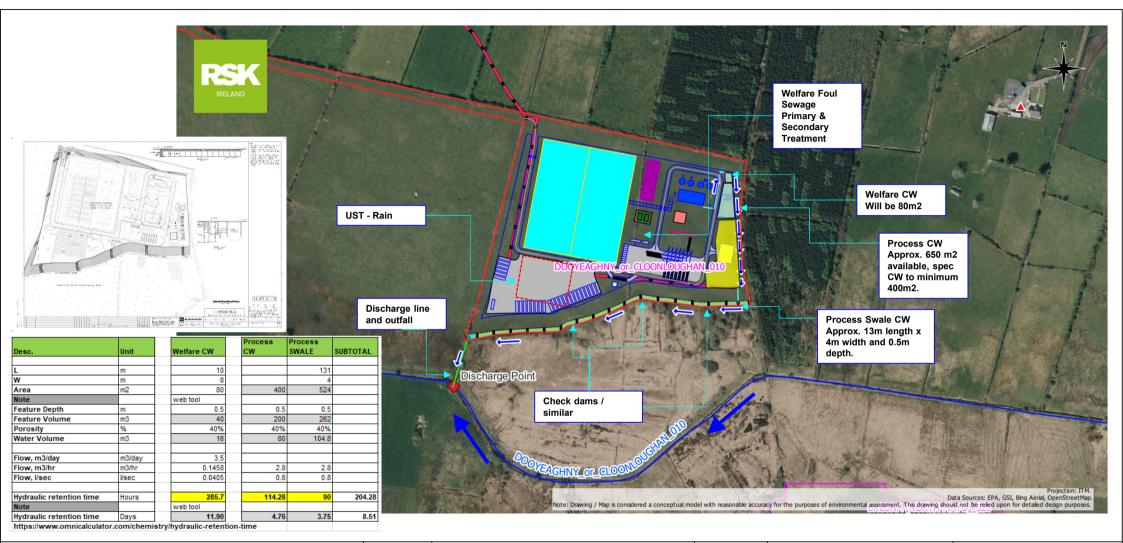
Minerex Environmental Ltd. (28/10/2022) Firlough Hydrogen Plant – Groundwater Supply Assessment (Doc Ref. 3131-043 (Rev1))

Environmental Protection Agency (EPA) *Water abstraction - An abstraction is the removal or diversion of water from a river, lake, stream, spring, groundwater well, borehole or estuary, for any purpose.* [Online] Available at: <u>https://www.epa.ie/ourservices/licensing/freshwater--marine/water-abstraction/</u> (Accessed May 2023)

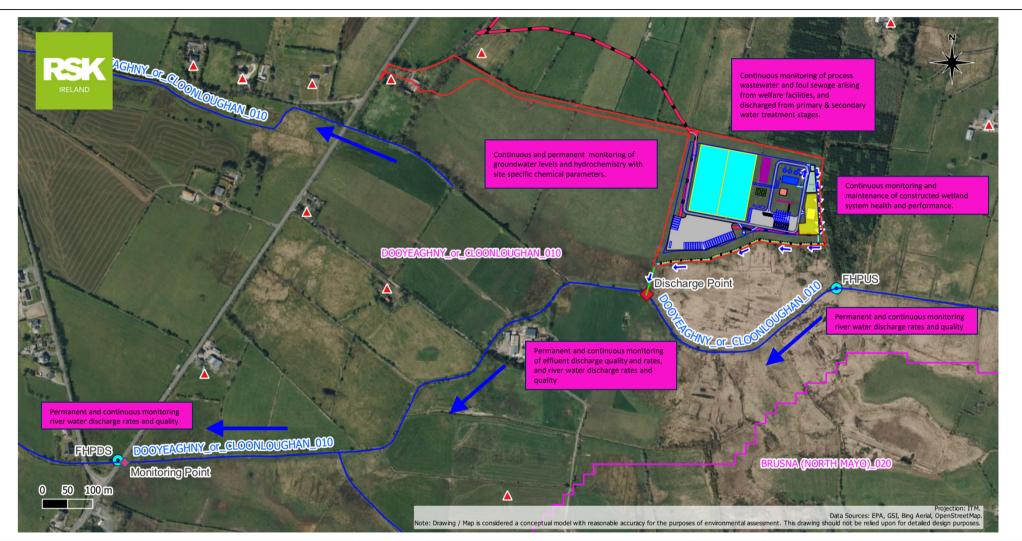
Constructed Wetland Association (CWA) (2017) *Guidelines – Constructed Wetlands* to Treat Domestic Septic Tank Effluent

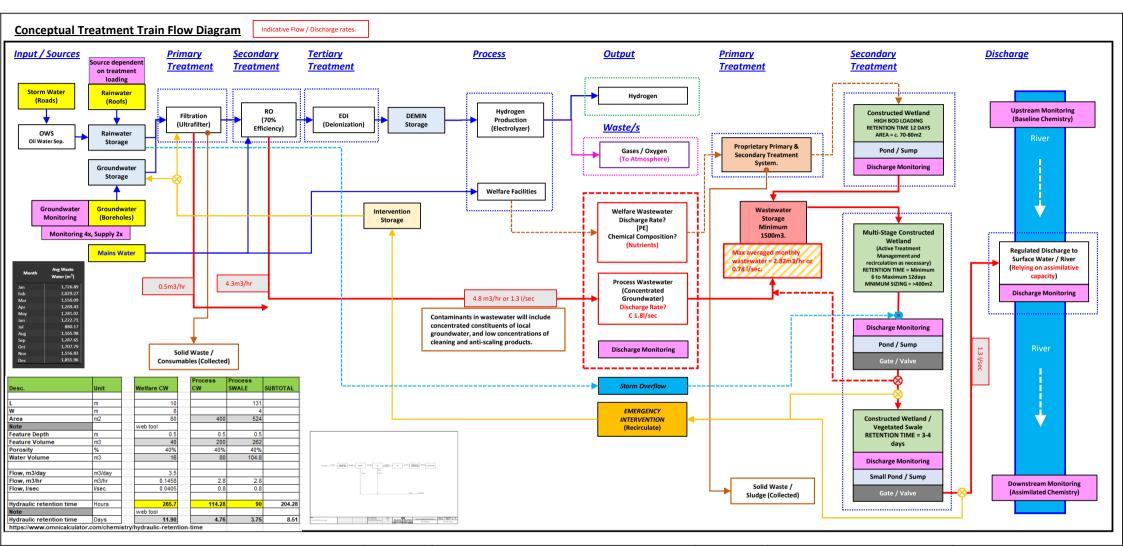

Cawley A.M., Healy M. (2000) Evaluation of the waste treatment performance of constructed wetlands with special reference to Williamstown Co. Galway Wetland System

DEPARTMENT OF AGRICULTURE, FISHERIES AND FOOD (2011) Minimum Specification for Integrated Constructed Wetlands, and Ancillary Works.



APPENDIX A


Ref. 603676 PDACA 06 Mercury Renewables PDACA – Firlough Green Hydrogen, Co. Sligo


Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
pDACA App. A	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Figure 1 Site Location & SW Discharge Data	Revision:	02			

Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
pDACA App. A	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	27/06/23	Reviewed By:	SK	
Figure 2 Proposed Development	Revision:	03			

Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	
pDACA App. A	Client:	Mercury Renewables			
Figure Name:	Date:	27/06/23	Reviewed By:	SK	
Figure 3 Site Location & SW Baseline Locations	Revision:	03			

Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	
pDACA App. A	Client:	Mercury Renewables			
Figure Name:	Date:	27/06/23	Reviewed By:	SK	
Figure 4 Hydrogen Site – Conceptual Process & Treatment Train Flow Diagram	Revision:	03			

APPENDIX B

Ref. 603676 PDACA 06 Mercury Renewables PDACA – Firlough Green Hydrogen, Co. Sligo

FHP & FWF - Wastewater, Grou	ndwater &							SALMONID REGULATIONS	WQ (Dangerous Sul Regulations 2001	bstances)																	
Surface Water Database (RSK File Ref. 603676-Hydro-R01-App05-	(00))	Environmental						REGULATIONS	(applies to all water groundwaters)	s other than		Firlough Hydr														Cista web the	dua ana Diant
(SK, CMc, JS 16/02/2023)		Quality Standard (EQS)	Surface Water	r Regs				(* FOR			EXAMPLE LICENCE	Groundwater (Minerex File			8/10/2022))	Sourcewater /	Wastewater			Pretreatment	Pretreatment	Pretreatment	Treated	Treated		drogen Plant ter (SW) BASELINE
RSK		Combination		Annual Average AA - EQS (Inland surface waters)		Maximum e allowable concentration MAC - EQS Inland surface waters	Other surface waters		Standard (ug/l) for fresh water <100 hardness / >100 hardness		Discharge Licence Discharge Licence D0206-01 Unnamed tributary Brogeen of the Legarhill River GBNI1NW363602 097						B&V Parameter List	Intake	Ultrafilter Backwash	RO Waste	Projected Discharge To Outfall	Welfare Discharge (7 Site Staff, c. 26 drivers per day) 1 no. PE = 60g BOD5 / PE d TKN 10g N / PE d Flow 0.1-0.5m3 / PE d		Background Concentrations from CW	[Conservative] Projected Combined Discharge To Outfall Key Parameters		
Sample Details Sample ID	Units											3131- 3131 BH6A- BH6E															FHP-SW2 AVERAGE (Downstream)
Site												FHP FHF	FHP	FHP 1	FHP FHP	FHP										FHP	FHP
Event / Date Reference												11/07/20212/07/2 3131-028 3131-0	28 3131-02	283131-02831	31-028 3131-0	028 3131-028-CC		B&V	B&V	B&V	B&V	RSK	-			02/12/2022	02/12/2022
Sample Type	Medum											Groundw Groun ater ater					er	Groundwater	Wastewaster	Wastewaster	Process Wastewater	Welfare Wastewater	r			Surface Water	Surface Water Surface Water
Grid Reference for Sampling Location Field Data - Discharge	Irish Grid																										
Surface Water Feature Description of sample location	Туре Туре											Borehole Boreh	ble Borehol	e Borehole Bo	rehole Boreho	ole Bore	nole									Stream/River	Stream/River Road bridge
Total Rain 3 Days Prior Monitoring Conditions	mm/72hours desc																									1.0 Dry	Dry
Estimated Discharge Rate (Q) (SITE) RIVER CHANNEL	l/sec																									n/a	n/a
Width of Water Body Width / 3	m																									0.667	0.9
Depth Edge Depth 1	m m																									0.50	
Depth 2 Depth 3	m m																									0.30	0.05
Depth Edge Area	m m2																									0.775	0.02 0.198
Distance Seconds Flow Velocity (V) - Approximate	m/c																									1	3
Friction Comment	m/sec #												_													0.1667 Very High	Moderate
Friction Loss Correction Discharge Rate (Q) Discharge Rate (Q)	76 m3/sec l/sec						_																			0.25	0.066 0.04906
Field Data - Hydrochemistry	//360																										
Clarity Colour																										Clear Slight Yellow	Clear Slight Yellow
Odour pH	pH Units	4.5 -	9 Soft water	n	/a n/	/a n/	/a n/a	a 6-	9		6 to 9 6 to 9															No 7.15	
Conductivity Temperature	mS/cm deg. C	1 .0mS/cm o	Not greater	n	/a n/	/a n/	/a n/a	a 21.	5																	0.565	
Laboratory Data - Hydrochemist	ry													ND ND	ND											244	
Alkalinity, Total as CaCO3 Alkalinity, Total as CaCO3 Ammoniacal Nitrogen, NH4+	mg/l mg/l													0 450		ND 164	460 Ammoniacal Nitroe	c 429.00 g 0.16						1.000	0	244	
NH4 to N convert factor Ammoniacal Nitrogen as N (low level)	mg/l	0.0	2	-				0.02 (Ammoni	a		0.1 0.5						NH4 to N convert f	a 0.77	65 0.7765	5 0.776	5 0.776	35		0.776	5		
Fats Oil & Greases	mg/l	No Impact on Fis	h					(non-ionized)	<mark>=</mark>				ID NI	D ND		ND	ND	g 0.12						0.776	5 0.776	4	4
Hardness, Total as CaCO3 unfiltered Dissolved Orgniac Carbon BOD, unfiltered	mg/l								5		2 45	ND 1	ID NI	D ND	ND N ND N 1 7	ND	ND Hardness, mg/L as	396.00						•	-	2.7	3.7
Chloride COD, unfiltered	mg/l mg/l	12	5						5		125 125	10 2. 33.9 30 7 8.	0.4 34.	2 22 6 50 7 7	1 7. 31.8 43	3.3 37	380 BOD, unfiltered 333 Chlorides, Cl as CaC 247 COD, unfiltered	2.52 0 47.27 7.90	703 47.270	3 189.081	0 174.30	90	00 11.522		5	23.3	
Conductivity @ 20 deg.C	mg/l mS/cm	1 .0mS/cm o 1000 uS/cr	r n								120 120			D ND	ND N	ND	ND	1.5								0.577	
TOTAL ANIONS TOTAL CATIONS																	TOTAL ANIONS TOTAL CATIONS	496.90	472.301	8 1889.207	1 1741.61	28					
Nitrate as NO3 Nitrates, N Nitrite as NO2	mg/l mg/l mg/l	25 (IG\						0.0	5			0.07 0.2 0.05 0.		7 0.07			Nitrates, NO3 108 Nitrates, N 0.05 Nitrites, NO2	0.04	0.0500	0 0.200	0 0.184	14	00 3.108		0. NO3	.2 4.6 1.15 0.02	0.9 1.0
Nitrogen, Kjeldahl pH	mg/l	4.5 -	9 Soft water	n	/a n/	/a n/	/a n/a	a 6-	9		6 to 9 6 to 9	1 DN					ND	0.45	0.4500	1.827	1.664	50.000	3.108			0.02	
Phosphate (Ortho as P)	mg/l		5 [ug/l] 5 High status	n	a n						0.075 0.3	0.02 0.		2 0.02		.02	0.02 Phosphates, P	0.02	200 0.0200	0.080	0 0.073	38		0.3 (TP)	0.	.3 0.03	0.03
Phosphorus (diss.filt) Phosphorus (tot.unfilt)	µg/l µg/l											ND 1 ND 1	ID NI ID NI	D ND D ND	ND N ND N	ND ND	ND ND									5	8 0
Sulphate Suspended solids, Total	mg/l mg/l	2	5					2	5 5		35 25	13.6 28	2	2 3.4	2	2 2	517 Sulfates, SO4 as Ca 233 TSS, mg/L	20.59								328	10
Turbidity True Colour Temperature	ntu mg/l Pt/Co	201 F	Not		10	10	10		6					D ND 1 1	ND N 1 1	ND 1.7 1	ND 117									4.7 ND	
Apparent Colour Filtered (Dissolved) Metals	mg/l Pt/Co		Not greater	n		/a n/	/a n/a	a <u>21</u> .	5			6.9	0.7 6.	1 29.6	19.5	70 23	633									56	68
Aluminium (diss.filt)	µg/l												10 1		10	10	10									20	20
Arsenic (diss.filt) Barium (diss.filt) Cadmium (diss.filt)	µg/l µg/l		n/a	2	2	.u n/	/a n/a	4	25/25	20		68.7	70 83.	5 0.5 4 84.6	81	92 79	0.5 950 0.08									2.5	26
Cadmium (diss.filt) Calcium (Dis.Filt) Chromium (diss.filt)	μg/l mg/l μg/l											0.08 0. 60.2 76	6.2 72. 83	8 0.08 6 77.7 1 9.07	83.3	79 74	833 150									96.2	108.1 102.
Copper (diss.filt)	µg/l		5					5 - with wate hardness of 1	er 5/30 0		5			3 0.3			364										7
Iron (Dis.Filt) Lead (diss.filt)	mg/l µg/l		n/a	1	.2 1.	.3 1	4 14	4				0.3 0.5 0.019 0.0 0.2 0 43.2 43	19 0.01 0.2 0	9 0.019 2 0.2	0.019 0.0	019 0.2 0	019 266									37	81
Magnesium (Dis.Filt) Manganese (diss.filt) Mercury (diss.filt)	μg/l mg/l μg/l											43.2 43	3 3.0	6 41.4 2 3	41.6 41 5.33 3.	1.7 42 .85 3	517 533									5.8	6.3 6. 8
Nickel (diss.filt)	µg/I µg/I	0.0	7	n	/a n/	/a 0.0	0.07	7				43.2 4. 3 0.01 0. 0.4 0 0.4 0 3.76 3. 3. 3.	01 0.0 0.4 0.	1 0.01 4 0.4	0.01 0.0 0.4 0	.01 0.4	0.01 0.4									1	1 2
Potassium (Dis.Filt) Selenium (diss.filt)	mg/l µg/l											1	1	1 1	1	1	322 1									6	3
Sodium (Dis.Filt) Zinc (diss.filt)	mg/l µg/l		8 n/a	8 (AA	4	40 n/	/a n/a	a 30 - with wate	er 8/50/100	41		50.3 4 1.39					950 175									12.4	

FHP & FWF - Wastewater, Grou	indwater &								SALMONID	WQ (Dangerous Substances)																				
Surface Water Database									REGULATIONS	Regulations 2001																				
(RSK File Ref. 603676-Hydro-R01-App05-((00))	Environmental								(applies to all waters other than			Firloug	h Hydrog	en Plant															
(SK, CMc, JS 16/02/2023)		Quality Standard								groundwaters)			Ground	lwater (G	W) BASE	LINE												Firlough H	ydrogen Plant	t
· · · · · · · · · · · · · · · · · · ·		(EQS)	Surface Wat	er Regs					(* FOR		EXAMPLE LICENCE						8/10/2022)		Sourcewater /	Wastewater			Pretreatment	Pretreatment	Pretreatment	Treated	Treated	Surface Wa	ater (SW) BAS	SELINE
	1	Combination	SW Regs	Annual	AA - EQS	Maxim	um MAC	C - EQS	COMPANICON	Standard (ug/l) for Standard (ug/l) F	or Discharge Licence	Discharge Licence	(interest			15 (11012) 2	.0, 10, 2022,	1	sourcemater,	Trastemate.	1	1		Welfare Discharge	Projected Combined		[Conservative]	Currate The		1
RSK		Combination	(River)	Average AA - EQS (Inland surface waters)	(Other surfa waters)	ace allowat concer MAC -	ble Othe ntration: wate EQS surface	er surface		fresh water <100 hardness />100 hardness	D0206-01 Unnamed tributary of the Legarhill River GBNI1NW363602 097	D0437-01 Brogeen							B&V Parameter List	Intake	Ultrafilter Backwash	RO Waste	Projected Discharge To Outfall	(7 Site Staff, c. 26 drivers per day) 1 no. PE = 60g BOD5 / PE d TKN 10g N / PE d Flow 0.1-0.5m3 / PE d	Discharge To Outfall	Concentrations from CW	Projected Combined Discharge To Outfall Key Parameters			
Sample Details	Units																													
Sample ID													3131- BH6A-	3131- BH6B-	3131- BH7A-	3131- 3 BH7B- B	131- 3131- H6C- BH7C-	AVERAGE										FHP-SW1 (Upstream)	FHP-SW2 (Downstream)	AVERAGE
Sito													0001	0001	0001	0001	HP FHP	FHP			_							FHP	FHP	,
Event / Date			-	_							-						7/20222/07/202											02/12/2022		
Reference			-	_							-							3131-028-COC2	D8V	B&V	B&V	B&V	B&V	RSK				02/12/2022	02/12/2022	
Sample Type	Medum			-					-		-							Groundwater	Dav	Groundwater				non			-	Surface Wate	r Surface Water	r Surface Water
													ater	ater		ater	ater ater	Groundwater		Groundwater	Wastewaster	Wastewaster	Tiocess Wastewater	Wenale Wastewater				Gunade Wate	ounace water	ounace water
Grid Reference for Sampling Location	Irish Grid																													
Unfiltered (Total) Metals																														
Aluminium (tot.unfilt)	µg/l												10	10.7	18.2	10	10 10	11.483	Aluminium, Al	0.010										
Arsenic (tot.unfilt)	µg/l	25	5 r	n/a	25	20	n/a	n/a		25/25	<mark>20</mark>		2	2 2	2	2	2 2		Arsenic, As	0.000										
Barium (tot.unfilt)	µg/l												68.4	70.5	84.8	83.9	83.8 90.1		Barium, Ba	0.06										
Cadmium (tot.unfilt)	µg/l												0.5	0.5	0.5	0.5	0.5 0.5		Cadmium, Cd	0.000										
Calcium (Tot. Unfilt.)	mg/l												74	01	_	83.8	87.7 79.5		Calcium, Ca as CaCC	293.87										
Chromium (tot.unfilt)	µg/l												3	7.26	3	10.7	3 3		Chromium, Cr	0.00	30 0.003	0.012	0 0.011	1						
Copper (tot.unfilt)	µg/l	5	5						5 - with wat	er 5/30	<mark>5</mark>		1	1.35	1	1	1 1	1.058											7	7 7
Hardness, Total as CaCO3 unfiltered													385		409															
Iron (Tot. Unfilt.)	µg/l				1.0								0.024	0.024	0.041	0.024	0.024 0.024		Iron, Fe	0.024										
Lead (tot.unfilt)	mg/l		r	n/a	1.2 1	1.3	14	14	-				1	1	1	1	1 1		Lead, Pb	0.000										
Magnesium (Tot. Unfilt.)	µg/l														49.7		41.8 40.6	45.700	Magnesium, Mg as	103.41										
Manganese (tot.unfilt)	µg/i		-	_	- 6	- 1-	0.07	0.07			-		2.47			2.99	4.33 3.79		Manganese, Mn	0.010							-		-	
Mercury (tot.unfilt)	µg/l	0.07	4	-	n/a r	n/a	0.07	0.07					0.02	0.02	0.02	0.02	0.02 0.02		Mercury, Hg	0.020										
Nickel (tot.unfilt) Potassium (Tot. Unfilt.)	mg/l ua/l			_							_		1	1	1	1	1 1		Nickel, Ni	0.00									-	
Potassium (Tot. Unfilt.) Selenium (tot.unfilt)			-	-	_								4.25	3.89	3.83	3.87	2.89 3.12		Potassium, K as CaC	5.894										
Selenium (tot.untilt) Sodium (Tot. Unfilt.)	mg/l			_									55.4	44.7	45.4	62.5	37.6 53.1		Selenium, Se Sodium, Na as CaCC	0.00										
Zinc (tot.unfilt)	µg/i			1/a 8 (AA	-	40	n/a	p/2		8/50/100	10		55.4	44./	45.1	03.5	51.0 53.1	49.900	Zinc. Zn	0.00	-								3	3
Microbiological	P.B.					40	iva	Iva		0,00,100				, 5	5	5	<u> </u>		21110, 211	0.000	80 0.008	0.032	1 0.029	0						
Coliforms, Total*	MPN/100ml	1	?										1	13.4	1	1	1 4.1	3.583	Coliforms, MPN/10	611.000	00 611.000	2444.000	0 2253.062	5				N	ID NE	
Escherichia Coli (W)*	MPN/100ml	1	?										1	1	1	1	1 1	1	E.coli MPN/100ml	19.075	50 19.075	76.300						N	ID NE	D #DIV/0

I

APPENDIX C

Ref. 603676 PDACA 06 Mercury Renewables PDACA – Firlough Green Hydrogen, Co. Sligo

603676 - Firlough (SK 14/02/2023)	ı Hydrogen			ary Assim on A - Usin					ool Q95%	lie and M	onthly Av	erage Disc	charge R	ate					
Cat. Asses TIME Asses RAIN	Desc. Period (Month/Annual) Rainfall LTA (mm/month) (KNOCK AIR)	Units Period mm/month	January 135.400	February 102.900	March 118.100	April 81.600		June 91.500	July 95.700	August 107.900	September 111.300	October 141.300	November 134.200	December 141.400	TOTAL M	IN M. 81.600	AX A\	(ERAGE 224.391	Met Eireann
Asses RAIN Asses RAIN	Rainfall LTA (cm/month) (Secondary Axis) (KNOCK AIR) Rainfall LTA (m/month) (KNOCK AIR)	cm/month m/month	13.540 0.135	10.290 0.103	11.810 0.118	8.160 0.082	9.200 0.092	9.150 0.092	9.570 0.096	10.790 0.108	11.130 0.111	14.130 0.141	13.420 0.134	14.140 0.141	135.330 1.353	8.160 0.082	135.330 1.353	22.439 0.224	Met Eireann / MEL
Asses RAIN Asses RAIN Asses RAIN	Rainfall LTA (mm/month) (3131-011) Rainfall LTA (cm/month) (3131-011) Rainfall LTA (m/month) (3131-011)	mm/month cm/month m/month	134.000 13.400 0.134	113.000 11.300 0.113	98.000 9.800 0.098	77.000 7.700 0.077	9.300	94.000 9.400 0.094	11.000	117.000 11.700 0.117	111.000 11.100 0.111	131.000 13.100 0.131	142.000 14.200 0.142	151.000 15.100 0.151	137.100	77.000 7.700 0.077	1,371.000 137.100 1.371	226.818 22.682 0.227	
Asses RAIN Asses RAIN	Site Area - Roofed (3131-011) Harvested RAIN Volume	m2 m3	14,800.000 2,003.920 32,850.000	14,800.000 1,522.920		14,800.000 1,207.680		14,800.000 1,354.200	14,800.000 1,416.360 32,850.000	14,800.000 1,596.920	14,800.000 1,647.240	14,800.000 2,091.240	14,800.000 1,986.160	14,800.000 2,092.720		1,207.680 2	20,028.840		
Asses RAIN	Harvested STORM Volume	m2 m3 m3	4,447.890 6,451.810	3,380.265 4,903.185	32,850.000 3,879.585 5,627.465	2,680.560 3,888.240	32,850.000 3,022.200 4,383.800	32,850.000 3,005.775 4,359.975	3,143.745		3,656.205 5,303.445	32,850.000 4,641.705 6,732.945	4,408.470 6,394.630	32,850.000 4,644.990 6,737.710		2,680.560 4	14,455.905	7,371.241	
Asses RAIN Asses WELFARE WW	Rain Storage Projected Aerage Wastewater (m3) (Based approximately on 7 site staff and c. 26 visitions / drivers per day)	m3 m3/day	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500		6,000.000 3.500	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500		/a n/	/a n/	a	
AssesWELFARE WW	Projected Aerage Wastewater Projected Aerage Wastewater	m3/hour m3/sec	0.146	0.146	0.0000405	0.146	0.0000405	0.0000405	0.0000405	0.0000405	0.0000405	0.146	0.146	0.146					
AssesWELFARE WW	Projected Aerage Wastewater Constructed Wetland (Welfare) - Retention Time	l/sec Days Method	0.041 11.904	0.041 11.904	0.041 11.904	0.041 11.904	0.041 11.904	0.041 11.904			0.041	0.041 11.904	0.041 11.904	0.04 ⁴ 11.904	1				
Asses PROCESS WW Asses PROCESS WW	Constructed Wetland (Welfare) - Outfall Projected Aerage Wastewater (m3) (B&V) Projected Aerage Wastewater (m3/day)	m3 m3/day	1726.890 57.563	67.642	51.670	1269.430 42.314	42.701	1222.710 40.757	29.339	38.866	1287.650 42.922	1707.790 56.926	1556.830 51.894	1855.960 61.865	0 5				Provided by B&V
	Projected Combined Aerage Wastewater (m3) (Welfare & Process) Projected Combined Average Wastewater (m3/hour)	m3/hour	61.063 2.544	2.964		45.814		44.257			46.422	60.426 2.518	2.308	2.724					
Asses COMBINED WW	Projected Combined Aerage Wastewater (m3/sec) Projected Combined Aerage Wastewater (l/sec) (Secondary	m3/sec l/sec	0.0007067	0.0008234		0.0005303					0.0005373	0.0006994 0.699	0.0006411 0.641	0.0007565	i				
	Axis) Wastewater Storage RESTRICT DISCHARGE RATE Coefficient	m3 %	1,500.000 1.00	1,500.000	1,500.000 1.00	1,500.000 1.00		1,500.000				1,500.000 1.00	1,500.000 1.00	1,500.000		/a n/	/a n/	a	
AssesDISCHARGE	Discharge Rate	m3/hour m3/sec	2.544	2.964	2.299	1.909	1.925	1.844	1.368	1.765		2.518 0.0006994	2.308	2.724	4				
Asses DISCHARGE Asses DISCHARGE	Discharge Rate Attenuation Rate	l/sec m3/hour	0.707	0.823	0.639	0.530	0.535	0.512	0.380	0.490	0.537	0.699	0.641	0.75	7				
Asses DISCHARGE Asses DISCHARGE Asses HYDROLOGY	Storage Capacity Storage Capacity HYDROtool Q95 for end of Catchment Node (I/sec)	hours days	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000					
Asses HYDROLOGY Asses HYDROLOGY	Approximate catchment area upstream of DP Inferred Q95%ile [FIXED]at DP (m3/sec)	l/sec % m3/sec	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0				
AssesHYDROLOGY	Inferred Q95%ile [FIXED] at DP (l/sec) Inferred Q%ile / month [VARIABLE] at DP (m3/sec)	l/sec m3/sec	4.620									4.620 0.015000	4.620 0.015000 15.000						
AssesHYDROLOGY	Inferred Q%ile / month [VARIABLE] at DP (I/sec)	l/sec	15.000 Indi	7.500 iactive Q95%ile,	7.000 Indicative Q/mo	4.620 onth, Long Term			1			15.000	15.000	15.000					
E —			16.000									1.600							
 			14.000	•						1	• •	1.400							
			12.000			<u></u>			-			1.200		Q95%ile at DP (l/sec)					
E			10.000				• •	-				1.000 Ond ary Ax							
—			6.000	/						~	-	0.600	(Second	LTA (cm/month) lary Axis)					
—			4.000	•	••	>	+	-	***		••	0.400	(KNOC)	(AIR)					
			2.000					-				0.200	Aerage	d Combined Wastewater					
<u> </u>			0.000	1	2 3	4	5 6	7	: i 8 9	10	11 12	0.000	(l/sec) (vvastewater Secondary Axis)					
								Month											
	tive Capacity Assessment			.		• · · · · ·													
Guidance	Appendix C – Assimilative Capacity and Mass Balance Calculations		January	February	March	April	Мау	June	July	August	September	October	November	December	Unit			Para	nComment
Assessment	Pollutant		BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD					-
Guidance Guidance	Calculation 1 – Assimilative Capacity																		
Guidance Guidance	This calculation is used to determine the capacity of the receiving waters to assimilate the effluent discharge in kg/day																		
Guidance	Formula 1 below may be used to determine assimilative capacity																		
	for the majority of chemical parameters e.g. BOD, suspended solids etc. with the exception of toxic substances e.g. heavy																		
Assessment Guidance	Appropriate Formula		Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1					Screen heavy metals
Guidance Guidance	Formula 1																		
Guidance	Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day																		
Guidance Guidance	Where: Cmax = maximum permissible concentration (EQS – 95%ile																		
Guidance Guidance Guidance	Cback = background upstream concentration (mg/l mean value) F95 = the 95%ile flow in the river (m3/s) Note: (60x60x24)/1000 = 86.4																		
Assessment	Environmental Quality Standard (EQS) The concentration of a particular pollutant or group of pollutants		5	5	5	5	5	5	5 5	5	5	5	5	6	5 mg/l			BOD	SW Regs Good Stat 95%ile
Assessment Assessment	95%ile value Cmax = maximum permissible concentration (EQS – 95%ile		1	1	1	1	1	1	1	1	1	1	1		1 mg/l 4 mg/l			BOD	Baseline
Assessment	value) (mg/l) Cback = background upstream concentration (mg/l mean value)		1	1	1	1	1	1	1	1	1	1	1		1 mg/l			BOD	Assume 95%ile valu
Assessment Assessment	F95 = the 95%ile flow in the river (m3/s) Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day		0.005		0.005 1.197504	0.005					0.005	0.005 1.197504	0.005	0.00	5 m3/sec			BOD	Assume 95%ile va
Guidance																			
Guidance Guidance Guidance	Formula 2 Assimilative capacity = (Cmax – Cback) x DWF x 86.4 kg/day																		
Guidance																			
 Guidance Guidance	where: Cmax = maximum permissible concentration (EQS - 95%ile value) (mg/l)																		
Guidance	Cback = background upstream concentration (mg/l mean value)																		
Guidance Guidance	DWF = dry weather flow in the river (m3/s) Note: (60x60x24)/1000 = 86.4																		
Assessment	Environmental Quality Standard (EQS) The concentration of a particular pollutant or group of pollutants in a receiving water which should														mg/l			BOD	Salmonid Regs
	not be exceeded in order to protect human health and the environment.																		
Assessment Assessment	95%ile value = Assume low e.g. BOD Cmax = maximum permissible concentration (EQS – 95%ile		C	0	0	0	C	C) (0	0	0	0	(mg/l D mg/l			BOD BOD	
Assessment	value) (mg/l) Cback = background upstream concentration (mg/l mean value)		C	0	0	0	C	C) (0	0	0	0	(D mg/l			BOD	Assume 95%ile valu
Assessment Assessment	F95 = the 95%ile flow in the river (m3/s) Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day		0	0	0	0	0	0) (0	0	0	0	(m3/sec 0 kg/day			BOD	Assume 95%ile valu
Guidance																			
Guidance	Once the assimilative capacity of the receiving water has been established, the percentage of the assimilative capacity that will be used by the discharge may be calculated using the effluent																		
Guidance	load information.																		
Guidance	The effluent load may be determined using the following formula:																		
	Effluent flow x effluent concentration / 1000 = effluent load (kg/day)																		
Guidance		L	0.0007007	0.0008234	0.0006305	0.0005202	0.0005247	0.0005122	0.0002001	0.0004000	0.0005373	0.0006004	0.0006444	0.0007565	m3/sec				
Guidance Guidance Assessment	Wastewater Loading Effluent flow (Dicharge Rate)			0.82340664	0.63853781	0.53025849	0.53472994	0.5122338	0.38008102	0.49034722	0.53728781	0.69937886	0.64113812	0.7565432	1 l/sec D mg/l			BOD	
Guidance Assessment Assessment Assessment Assessment	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration		0.70674769	10		5.30258488	5.34729938 462,006.67	5.12233796	3.80081019 328,390.00	4.90347222 423,660.00	5.37287809 464,216.67	6.99378858 604,263.33	553,943.33	7.565432	1 mg/sec mg/day			BOD BOD	
Guidance Guidance Assessment Assessment Assessment Assessment Assessment Assessment	Effluent flow (Dicharge Rate) Effluent flow Effluent Load Effluent Load		0.70674769 10 7.06747685 610,630.00	8.23406636 711,423.33	551,696.67	458,143.33	0.4620007	0.4425700		(14)))2200	0.4640407	0.6042622	0.5530400	0.65267.00					
Guidance Guidance Assessment Assessment Assessment Assessment Assessment	Effluent flow (Dicharge Rate) Effluent flow M Effluent concentration Effluent Load Effluent Load Assimilative Capacity Assessment Result		0.70674769 10 7.06747685 610,630.00 0.6106300	8.23406636 711,423.33 0.7114233	551,696.67 0.5516967	0.4581433	-	0.4425700						0.6536533				BOD	
Guidance Guidance Assessment Assessment Assessment Assessment Assessment Guidance Guidance Assessment Assessme	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 86.4 kg/day		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504	8.23406636 711,423.33 0.7114233 1.197504	551,696.67 0.5516967 1.197504	0.4581433	1.197504	0.4425700	1.197504	1.197504	1.197504	1.197504	1.197504	0.6536533	4 kg/day			BOD	
Guidance Sasessment Assessment	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 88.4 kg/day Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 88.4 kg/day Effluent Load (EL) AC - EL		0.70674769 10 7.06747685 610.630.00 0.6106300 1.197504 0.6106300 0.586874	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067	551,696.67 0.5516967 1.197504 0.5516967 0.64580733	0.4581433 1.197504 0.4581433 0.73936067	1.197504 0.4620067 0.73549733	0.4425700 1.197504 0.4425700 0.754934	1.197504 0.3283900 0.869114	1.197504 0.4236600 0.773844	1.197504 0.4642167 0.73328733	1.197504 0.6042633 0.59324067	1.197504 0.5539433 0.64356067	0.6536533 1.197504 0.6536533 0.54385067	4 kg/day kg/day 7 kg/day			BOD	
Guidance Guidance Assessment Asse	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Effluent Load Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Assess	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 Igday Effluent Load (EL) AC - EL Percentage of the assimilative capacity that		0.70674769 10 7.06747685 610.630.00 0.6106300 1.197504 0.6106300 0.586874	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067	551,696.67 0.5516967 1.197504 0.5516967 0.64580733	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733	0.4425700 1.197504 0.4425700 0.754934	1.197504 0.3283900 0.869114	1.197504 0.4236600 0.773844	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067	0.6536533 1.197504 0.6536533 0.54385067	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Assess	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC: EL Percentage of the assimilative capacity that will be used by the discharge ACA Result		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Assess	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Effluent Load Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Cuidance Guidance Guid	Effluent flow (Dicharge Rate) Effluent flow M Effluent concentration Effluent Load Effluent Load Effluent Load Sasimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax - Cback) × F95 × 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 - Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may them be compared directly		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Cuidance Guidance Guid	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC: EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge.		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Guidance Assessment Guidance	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC: EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (EQS) to determine whether the		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Guidance Assessment Guidance Guidance Guidance Guidance Guidance Guidance Guidance	Effluent flow (Dicharge Rate) Effluent flow M Effluent concentration Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (CS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation:		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Guidance Assessment Guidance Guidance Guidance Guidance Guidance Guidance Guidance	Effluent flow (Dicharge Rate) Effluent flow M Effluent concentration Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (CS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation:		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Guidance	Effluent flow (Dicharge Rate) Effluent flow Effluent tow Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC- EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the encivity water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (EQS) to determine whether the discharge will cause an exceedance of the EQS value. $T = \frac{FC + fc}{F + f}$		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Guidance Guid	Effuent flow (Dicharge Rate) Effluent flow (Dicharge Rate) Effluent tow Effluent Load Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax - Cback) x F95 x 88.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 - Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (EOS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • F is the river flow upstream of the discharge (95% flow		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Guidance Assessment Guidance	Effluent flow (Dicharge Rate) Effluent flow (Dicharge Rate) Effluent concentration Effluent Load Effluent Load Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC: EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (CS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • F is the river flow upstream of the discharge (95% lef flow m35ec); • C is the concentration of pollutant in the river upstream of the discharge model concentration in mg/b;		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Guidance Assessment Guidance	Effluent flow (Dicharge Rate) Effluent flow (Dicharge Rate) Effluent concentration Effluent Load Effluent Load Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (CS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • F is the river flow upstream of the discharge (95%)lef flow m3/sec); • C is the concentration of pollutant in the river upstream of the discharge concentration of pollutant in the discharge. • Is the flow of the discharge (maximum flow in m3/sec);		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Cuidance Guidance	Effluent flow (Dicharge Rate) Effluent flow (Dicharge Rate) Effluent concentration Effluent Load Effluent Load Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (CS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • F is the river flow upstream of the discharge (95%)le flow m/stec); • C is the concentration of pollutant in the river upstream of the discharge (maximum concentration of pollutant in the discharge (mg/h);		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.64580733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620067 0.73549733 38.6%	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.197504 0.3283900 0.869114 27.4%	1.197504 0.4236600 0.773844 35.4%	1.197504 0.4642167 0.73328733 38.8%	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.197504 0.6536533 0.54385067 54.6%	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Cuidance Guidance	Effluent flow (Dicharge Rate) Effluent flow (Dicharge Rate) Effluent tow Effluent Load Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (EOS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • C is the concentration of pollutant in the river upstream of the discharge (mean concentration in mg)); • C is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge • c is the maximum concentration of pollutant in the discharge		0.70674769 10 7.06747685 610,630.00 0.6106300 1.197504 0.6106300 0.586874 51.0%	8.23406636 711,423.33 0.7114233 1.197504 0.7114233 0.48608067 59.4%	551,696.67 0.5516967 1.197504 0.5516967 0.645560733 46.1%	0.4581433 1.197504 0.4581433 0.73936067 38.3%	1.197504 0.4620073 38.6% PASS	0.4425700 1.197504 0.4425700 0.754934 37.0%	1.19750/ 0.3283900 0.86911 27.4% PASS	1.197504 0.4236600 0.773844 35.4% PASS	1.197504 0.4642167 0.73328733 38.8% PASS	1.197504 0.6042633 0.59324067 50.5%	1.197504 0.5539433 0.64356067 46.3%	0.6536533 1.19750 0.6536533 0.438506 54.6% PASS	4 kg/day kg/day 7 kg/day			BOD BOD BOD	
Guidance Guidance Guidance Assessment Guidance	Effluent flow (Dicharge Rate) Effluent flow (Dicharge Rate) Effluent tow Effluent Load Effluent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 88.4 kg/day Effluent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (EGS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • C is the concentration of pollutant in the river upstream of the discharge (mean concentration of pollutant in the discharge (may): • C is the concentration of pollutant in the discharge • T is the maximum concentration of pollutant in the discharge • C is the concentration of pollutant in the discharge • T is the maximum concentration of pollutant in the discharge • C is the concentration of pollutant in the discharge • C is the concentration of pollutant in the discharge • T is the maximum concentration of pollutant in the discharge • C is the concentration of pollutant in the discharge • C (Sifica flow m3/sec); • C (maximum discharge flow m3/sec); • C (maximum discharge flow m3/sec);		0.70674768 17.0674768 10.70674768 10.70674768 10.70674768 10.7074768 10.6106300 0.6106300 0.6106300 0.6506874 51.0% PASS	8 2340636 711,4233 0.7114233 0.7114233 0.48608067 59.4% PASS	551,896,67 0.5518967 1.197504 0.5516967 0.5516967 0.054580733 46.1% PASS	0.4581433 1.197504 0.4581433 0.73936067 38.3% PASS	1.197504 0.4620067 0.73549733 38.6% PASS	0.4425700 1.197504 0.4425700 0.754934 37.0% PASS 0.400462 0.000462 1 0.0005122 1	1.19750- 0.383900 0.86911- 27.4% PASS	1.197504 0.4236600 0.773844 35.4% PASS	1.197504 0.4642167 0.73328733 38.8% PASS	1.197504 0.6042633 0.59324067 50.5% PASS	1.197504 0.5539437 46.3% PASS	0.6536533 1.19750- 0.6536533 0.4538506: 54.6% PASS 0.438506: 0.438506: 0.438506: 0.438506: 0.438506: 0.438506: 0.00462: 0.000465: 0.0004555:	4 kg/day				Linked to abve Linked to abve
Guidance Guidance Guidance Guidance Assessment Guidance G	Effuent flow (Dicharge Rate) Effuent flow (Dicharge Rate) Effuent concentration Effuent Load Effuent Load Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day Effuent Load (EL) AC - EL Percentage of the assimilative capacity that will be used by the discharge ACA Result Calculation 2 – Mass Balance This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (CGS) to determine whether the discharge will cause an exceedance of the EQS value. Mass balance Equation: $T = \frac{FC + fc}{F + f}$ where: • F is the river flow upstream of the discharge (95%)ile flow m3/sec); • C is the concentration of pollutant in the river upstream of the discharge (maximum concentration of pollutant in the discharge (mg/law); • T is the flow of the discharge (maximum flow in m3/sec); • C is the maximum concentration of pollutant in the discharge (mg/l); • T is the flow of the discharge (maximum flow in m3/sec); • C is the maximum concentration of pollutant in the river upstream of the discharge. • T is befow of the discharge (maximum flow in m3/sec); • C is the maximum concentration of pollutant downstream of the discharge. • T is the flow of the discharge (maximum flow in m3/sec); • C (mean background concentration in mg/l);		0.70674768 17.06747685 610.63.00 0.6106300 0.586874 51.0% PASS	8 2340636 711,4233 0.7114233 1.197504 0.711423 0.48608067 59.4% PASS 0.48608067 59.4%	551,696,67 0.5516967 1.197504 0.5516967 0.5516967 0.5516967 0.04580733 46.1% PASS	0.4581433 1.197504 0.4581433 0.73936067 38.3% PASS 0.00462	1.197504 0.4620067 0.73549733 38.6% PASS	0.4425700 1.197504 0.4425700 0.754934 37.0% PASS 0.4425700 0.754934 37.0% 0.754934 0.7	1.19750- 0.3283900 0.869114 27.4% PASS	1.197504 0.4236600 0.773844 35.4% PASS	1.197504 0.4642167 0.73328733 38.8% PASS	1.197504 0.6042633 0.59324067 50.55% PASS	1.197504 0.5539437 46.3% PASS	0.6536533 1.19750- 0.6536533 0.54385065 54.6% PASS 0.54385065 0.4385065 54.6% 0.6538506 0.004655 0.004655 0.0007555 0.00046555 0.0004655 0.	Kg/day Kg/day				Linked to abve Linked to abve

RSK

		3 676 - Firloug h 14/02/2023)	Hydrogen		Prelimina								al) 1			ahar -	- 4		VA/+	ten C'	
					Scenarior Discharge		g Inferred	l Variable	River Q9	5%ile (HF	IYDRO T	ool Derive	ed) and Mo	onthly Ave	erage Dis	charge R	ate, combi	ned with	Wastewa	ter Storage	and NO Restricte
	Asse Asse	Cat. s TIME s RAIN	Rainfall LTA (mm/month) (KNOCK AIR)	mm/month	135.400	102.900	118.100	81.600	92.000	91.500			September 111.300	141.300			1,353.300		1,353.300		Met Eireann
	Asse Asse	SRAIN SRAIN SRAIN	Rainfall LTA (m/month) (KNOCK AIR) Rainfall LTA (mm/month) (3131-011)	cm/month m/month mm/month cm/month	13.540 0.135 134.000 13.400	10.290 0.103 113.000 11.300	11.810 0.118 98.000 9.800	8.160 0.082 77.000 7.700	0.092	9.150 0.092 94.000 9.400	9.570 0.096 110.000 11.000	0.108	11.130 0.111 111.000 11 100	14.130 0.141 131.000 13.100	0.134	0.141	1.353 1,371.000	8.160 0.082 77.000 7.700	1.353 1,371.000	22.439 0.224 226.818 22.682	Met Eireann / MEL
	Asse Asse	s RAIN s RAIN s RAIN	Rainfall LTA (m/month) (3131-011) Site Area - Roofed (3131-011)	cm/month m/month m2	13.400 0.134 14,800.000	11.300 0.113 14,800.000	9.800 0.098 14,800.000	7.700 0.077 14,800.000	0.093 14,800.000	9.400 0.094 14,800.000	11.000 0.110 14,800.000	0.117 14,800.000	11.100 0.111 14,800.000	13.100 0.131 14,800.000	14.200 0.142 14,800.000	0.151 14,800.000	1.371 14,800.000	7.700 0.077 n/a	1.371 n/a	22.682 0.227 n/a	
	Asse	s RAIN s RAIN s RAIN	Site Area - Not Roofed (3131-011)	m3 m2 m3	2,003.920 32,850.000 4,447.890	1,522.920 32,850.000 3,380.265	1,747.880 32,850.000 3,879.585	32,850.000 2,680.560		1,354.200 32,850.000 3,005.775	1,416.360 32,850.000 3,143.745	1,596.920 32,850.000 3,544.515	1,647.240 32,850.000 3,656.205	2,091.240 32,850.000 4,641.705	1,986.160 32,850.000 4,408.470		20,028.840 32,850.000 44,455.905	n/a	20,028.840 n/a 44,455.905	n/a	
	Asse	SRAIN SRAIN SWELFARE WW	Rain Storage	m3 m3 m3/day	6,451.810 6,000.000 3.500	4,903.185 6,000.000 3.500	5,627.465 6,000.000 3.500	3,888.240 6,000.000 3.500	4,383.800 6,000.000 3.500	4,359.975 6,000.000 3.500	4,560.105 6,000.000 3.500		5,303.445 6,000.000 3.500	6,732.945 6,000.000 3.500	6,394.630 6,000.000 3.500	6,737.710 6,000.000 3.500	64,484.745 6000		64,484.745 n/a	10,692.227 n/a	
	Asse	SWELFARE WW	site staff and c. 26 visitiors / drivers per day) Projected Aerage Wastewater	m3/hour m3/sec	0.146	0.146	0.146			0.146	0.146		0.146	0.146							
		WELFARE WW WWT (W)	Projected Aerage Wastewater Constructed Wetland (Welfare) - Retention Time	l/sec Days Method	0.0000403	0.041 11.904	0.041 0.041 11.904	0.041 11.904	0.0000403 0.041 11.904	0.0000403 0.041 11.904	0.000403	0.041	0.041	0.000403	0.041	0.041					
		SPROCESS WW	Projected Aerage Wastewater (m3) (B&V) Projected Aerage Wastewater (m3/day)	m3 m3/day	1726.890 57.563	2029.270 67.642	1550.090 51.670	1269.430 42.314	42,701	1222.710 40.757	880.170 29.339	38.866	42.922	1707.790 56.926	51.894	61.865	5				Provided by B&V
			Projected Combined Aerage Wastewater (m3) (Welfare & Process) Projected Combined Average Wastewater (m3/hour)	m3/hour	61.063 2.544	71.142	55.170 2.299	45.814	1.925	44.257	32.839		46.422	60.426 2.518		2.724					
		SCOMBINED WW	Projected Combined Aerage Wastewater (m3/sec) Projected Combined Aerage Wastewater (l/sec) (Secondary Axis)	m3/sec I/sec	0.0007067 0.707	0.0008234 0.823	0.0006385 0.639	0.0005303 0.530	0.535	0.0005122 0.512	0.0003801 0.380	0.490	0.0005373	0.0006994 0.699	0.641	0.0007565	7				
				m3 % m3/hour	1,500.000 1.00 2.544	1,500.000 1.00 2.964	1,500.000 1.00	1,500.000 1.00 1.909	1.00	1,500.000 1.00 1.844	1.00	1.00		1,500.000 1.00 2.518	1.00	1.00	1500.000	n/a	n/a	n/a	
)	Asse Asse	SDISCHARGE	Discharge Rate Discharge Rate Discharge Rate	m3/sec I/sec	0.0007067 0.707	0.0008234 0.823	2.299 0.0006385 0.639	0.0005303 0.530	0.0005347 0.535	0.0005122 0.512	0.0003801	0.0004903	0.0005373	0.0006994	0.0006411	0.0007565					
2	Asse Asse Asse	DISCHARGE	Attenuation Rate Storage Capacity	m3/hour hours days	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!	0.000 #DIV/0! #DIV/0!					
5	Asse	SHYDROLOGY SHYDROLOGY SHYDROLOGY	HYDROtool Q95 for end of Catchment Node (I/sec) Approximate catchment area upstream of DP	l/sec % m3/sec	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	14.000 0.330 0.004620	0 14.000 0 0.330 0 0.004620					
	Asse Asse	SHYDROLOGY SHYDROLOGY	Inferred Q95%ile [FIXED] at DP (l/sec) Inferred Q%ile / month [VARIABLE] at DP (m3/sec) Inferred Q%ile / month [VARIABLE] at DP (l/sec)	l/sec m3/sec l/sec	4.620 0.010000 10.000	4.620 0.010000 10.000	4.620 0.007500 7.500	4.620 0.004620 4.620	4.620 0.003000	4.620 0.002000 2.000	4.620	4.620	4.620	4.620	4.620	0 4.620 0 0.010000					
)	7330	-		1300					Average Month					1.000	10.000	10.000				II	
:		-			16.000								_	1.600							
5 5 7		-			12.000	\mathbf{i}	~					/ _	•	1.200	Inferred	Q95%ile					
3					10.000		$\langle \cdot \rangle$		• •	-			,	1.000 M		at DP (l/sec)					
2					6.000	-	1					h	_	0.800 AX	Inferred [VARIA (l/sec)	I Q%ile / month BLE] at DP					
		_			4.000	•	• • •		*	-	-		••	0.600	Rainfall (Secon (KNOC)	LTA (cm/month) dary Axis) K AIR)					
,		_			2.000						all and a second second			0.200	Projecti	ed Combined Wastewater					
3		_			0.000 0	1	2 3	4	5 6 N	7 Month	8 9	10	11 12	0.000	Aerage (l/sec) (Wastewater Secondary Axis)					
2	Prei	iminary Assimila	tive Capacity Assessment																		
	Guid		Appendix C – Assimilative Capacity and Mass Balance Calculations		January F	ebruary	March	April	Мау	June	July	August	September	October	November	December	Unit			Pa	ranComment
	Aser	ssment	Pollutant		BOD E	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD					
, 3	Guid: Guid:	ance	Calculation 1 – Assimilative Capacity																		
	Guid	ance	This calculation is used to determine the capacity of the receiving waters to assimilate the effluent discharge in kg/day																		
	Guid	ance	Formula 1 below may be used to determine assimilative capacity																		
2	Asse	ssment	for the majority of chemical parameters e.g. BOD, suspended solids etc. with the exception of toxic substances e.g. heavy matele in which case Formula 2 must be used Appropriate Formula		Formula 1 F	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1					Screen heavy metals
3 4	Guid	ance	Formula 1					d 1													
5	Guid	ance	Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day																		
8	Guid Guid Guid	ance	Where: Cmax = maximum permissible concentration (FOS = 95%ile																		
D 1	Guid Guid	ance ance	Cmax = maximum permissible concentration (EQS – 95%ile Cback = background upstream concentration (mg/l mean value) F95 = the 95%ile flow in the river (m3/s)																		
2	Guid Asse	ance ssment	Note: (60x60x24)/1000 = 86.4 Environmental Quality Standard (EQS) The concentration of a particular pollutant or group of pollutants		5	5	5	5	5	5	Ę	5	5	5	6	5 5	i mg/l				D SW Regs Good Status 95%ile
5		ssment ssment	95%ile value Crnax = maximum permissible concentration (EQS – 95%ile value) (mg/l)		1 4	1 4	1	1	1	1	1	1	1	1	1		l mg/l l mg/l			BC BC	D Baseline D
		ssment	Cback = background upstream concentration (mg/l mean value)		1	1	1	1	1	1	1	1	1	1	1		mg/l			BC	D Assume 95%ile value
3	Asse	essment essment	F95 = the 95%ile flow in the river (m3/s) Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day		0.010 2.592	0.010 2.592	0.008 1.944	0.005 1.197504	0.003 0.7776	0.002 0.5184	0.001	0.002 0.5184		0.008 1.944	0.010 2.592		m3/sec kg/day			BC	Assume 95%ile valu
	Guid Guid Guid	ance	Formula 2																		
2	Guid	ance	Assimilative capacity = (Cmax – Cback) x DWF x 86.4 kg/day																		
	Guid Guid Guid	ance	where: Cmax = maximum permissible concentration (EQS - 95%ile																		
	Guid		value) (mg/l) Cback = background upstream concentration (mg/l mean value)																		
8	Guid Guid Asse		DWF = dry weather flow in the river (m3/s) Note: (60x60x24)/1000 = 86.4 Environmental Quality Standard (EQS)														mg/l			80	D Salmonid Regs
			Environmental Quality Standard (EQS) The concentration of a particular pollutant or group of pollutants in a receiving water which should not be exceeded in order to protect human health and the																	BC	uu
00	Asse	ssment	not be exceeded in order to protect numan nealth and the environment. 95%ile value = Assume low e.g. BOD														mg/l			BC	D
01	Asse	essment	Cmax = maximum permissible concentration (EQS – 95%ile value) (mg/l) Cback = background upstream concentration (mg/l mean value)		0	0	0	0	0	0	(0	0	0	0) mg/l			BC	
)3	Asse	ssment	F95 = the 95%ile flow in the river (m3/s)		U	0	0	0	0	0		0	0	0			m3/sec				Assume 95%ile value
15	Guid		Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day		0	0	0	0	0	0	(0	0	0	() kg/day			BC	
	Guid		Once the assimilative capacity of the receiving water has been established, the percentage of the assimilative capacity that will be used by the discharge may be calculated using the effluent																		
17	Guid	ance	load information. The effluent load may be determined using the following formula:																		
19	Guid	ance																			
1	Guid	ance	Effluent flow x effluent concentration / 1000 = effluent load (kg/day)																		
3 4	Asse Asse	ssment ssment	Wastewater Loading Effluent flow (Dicharge Rate) Effluent flow		0.0007067	0.82340664	0.63853781	0.53025849	0.53472994	0.5122338	0.38008102	0.49034722		0.69937886	0.64113812	0.0007565	l/sec				
5 6	Asse Asse	essment essment	Effluent concentration Effluent Load Effluent Load		10 7.06747685	10 8.23406636	10 6.38537809	10 5.30258488	10 5.34729938	10 5.12233796	10 3.80081019	10 4.90347222	10 5.37287809 464,216.67	10 6.99378858	6.41138117	7.565432	mg/l mg/sec			BC BC	D
8 9	Asse Guid	ssment	Effluent Load Effluent Load Assimilative Capacity Assessment Result		0.6106300	0.7114233	0.5516967	0.4581433	0.4620067	0.4425700	0.3283900	0.4236600	0.4642167	0.6042633	0.5539433	0.6536533	kg/day			BC	
!1	Asse	ssment	Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4 kg/day		2.592	2.592	1.944			0.5184	0.2592						kg/day			BC	
3	Asse	essment essment essment	Effluent Load (EL) AC - EL Percentage of the assimilative capacity that		0.6106300 1.98137 23.6%		0.5516967 1.39230333 28.4%	0.4581433 0.73936067 38.3%	0.31559333	0.4425700 0.07583 85.4%	0.3283900 -0.06919 126.7%	0.4236600 0.09474 81.7%	0.4642167 0.73328733 38.8%		2.03805667	0.6536533 1.93834667 25.2%	' kg/day			BC BC	
		essment	ACA Result							PASS	FAIL	PASS	PASS		PASS	PASS					
6	Asse	essment																			
7 8 9	Guid Guid Guid	ance ance ance	Calculation 2 – Mass Balance																		
	Guid		This formula is used to calculate the concentration of a parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly																		
			I his downstream concentration may then be compared directly with the water quality standard (EQS) to determine whether the discharge will cause an exceedance of the EQS value.																		
2	Guid Guid	ance	Mass balance Equation:																		
3	Guid Guid	ance																			
			$T = \frac{FC + fc}{F + f}$																		
6	Guid	ance	where:																		
	Guid:		F is the river flow upstream of the discharge (95%ile flow m3/sec); C is the concentration of pollutant in the river upstream of the																		
	Guid Guid	ance	discharge (mean concentration in mg/l); • f is the flow of the discharge (maximum flow in m3/sec); • c is the maximum concentration of pollutant in the discharge																		
	Guid		(mg/l); • T is the concentration of pollutant downstream of the discharge.																		
13		ssment	F (95%ile flow m3/sec);		0.01	0.01	0.0075	0.00462	0.003	0.002	0.001	0.002					m3/sec				Linked to abve
15 16	Asse	ssment ssment	C (mean background concentration in mg/l); f (maximum discharge flow m3/sec); c (maximum pollutant conc. Discharge mg/l);		10	10	10	10	1 0.00053473 10	10	10	10	10	1 0.00069938 10	10	10) mg/l				D Linked to abve 3.0 m3/hour D Linked to abve
	Ass	essment	T (Resulting concentration downstream) EQS		1.594	1.685	1.706	1.927			3.479	2.772	1.938		1.542	1.633	mg/l			BC	
	1455	essment	EQS Mass Balance Result		PASS I	5 PASS	5 PASS	5 PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	i mg/l			BC	DDLinked to abve

RSK

Asses Wei Asses Wei Asses Wei Asses Wei Asses Pic Asses Pic Asses Pic Asses Pic Asses Pic Asses Pic Asses Pic Asses Con Asses Con Asses Con Asses Con Asses Con Asses Con Asses Dis Asses Dis Assessment	TIME RAIN RAIN RAIN RAIN RAIN RAIN RAIN RAIN				ary Assim					YDRO To	ol Derive	d) and Mo	onthly Ave	erage Dis	charge R	ate, combi	ined with	Wastewat	er Storage a	nd WITH
Asses RAII Asses RAI Asses RAI Asse RAI Asses RAI Asses RAI Asses RAI Asses RAI Asses RAI Asses	RAIN RAIN RAIN RAIN RAIN RAIN RAIN	Desc. Period (Month/Annual)	Units		ed Dischar	rge Rate						September		November	December				AVERAGE	
Asses RAIL Asses PEC Asses PEC <th>RAIN RAIN RAIN RAIN RAIN</th> <th>Period (Month/Annual) Rainfall LTA (mm/month) (KNOCK AIR) Rainfall LTA (cm/month) (Secondary Axis) (KNOCK AIR) Rainfall LTA (m/month) (KNOCK AIR)</th> <th>Period mm/month cm/month m/month</th> <th>135.400</th> <th>102.900 10.290</th> <th>March 118.100 11.810 0.118</th> <th>April 81.600 8.160 0.082</th> <th>May 92.000 9.200 0.092</th> <th></th> <th>July 95.700 9.570 0.096</th> <th>August 107.900 10.790 0.108</th> <th>September 111.300 11.130 0.111</th> <th>October 141.300 14.130 0.141</th> <th>November 134.200 13.420 0.134</th> <th>December 141.400 14.140 0.141</th> <th>1,353.300 135.330</th> <th>81.600 8.160</th> <th>MAX 1,353.300 135.330 1.353</th> <th>224.391 22.439 0.224</th> <th>Met Eireann Met Eireann / MEL</th>	RAIN RAIN RAIN RAIN RAIN	Period (Month/Annual) Rainfall LTA (mm/month) (KNOCK AIR) Rainfall LTA (cm/month) (Secondary Axis) (KNOCK AIR) Rainfall LTA (m/month) (KNOCK AIR)	Period mm/month cm/month m/month	135.400	102.900 10.290	March 118.100 11.810 0.118	April 81.600 8.160 0.082	May 92.000 9.200 0.092		July 95.700 9.570 0.096	August 107.900 10.790 0.108	September 111.300 11.130 0.111	October 141.300 14.130 0.141	November 134.200 13.420 0.134	December 141.400 14.140 0.141	1,353.300 135.330	81.600 8.160	MAX 1,353.300 135.330 1.353	224.391 22.439 0.224	Met Eireann Met Eireann / MEL
Asses RAI Asses PRC Asses	RAIN	Rainfall LTA (mm/month) (3131-011) Rainfall LTA (cm/month) (3131-011) Rainfall LTA (m/month) (3131-011)	mm/month cm/month m/month		113.000 11.300	98.000 9.800 0.098	77.000 7.700 0.077	93.000 9.300 0.093	94.000 9.400	110.000 11.000 0.110	117.000 11.700 0.117	111.000 11.100 0.111	131.000 13.100 0.131	142.000 14.200 0.142	151.000 15.100 0.151	1,371.000 137.100	77.000 7.700	1,371.000 137.100 1.371	226.818 22.682 0.227	
Asses RAII Asses RAII Asses RAI Asses PAC Asses PAC Asses Con Asses Con Con Con Con Con Con Con Con Con Con		Site Area - Roofed (3131-011) Harvested RAIN Volume Site Area - Not Roofed (3131-011)	m2 m3 m2	14,800.000 2,003.920	14,800.000	14,800.000 1,747.880	14,800.000 1,207.680	14,800.000 1,361.600 32,850.000	14,800.000 1,354.200	14,800.000 1,416.360	14,800.000 1,596.920 32,850.000	14,800.000 1,647.240	14,800.000 2,091.240	14,800.000 1,986.160	14,800.000 2,092.720	14,800.000	n/a 1,207.680	n/a 20,028.840	n/a 3,320.985 n/a	
Assess WEI Assess WEI Assess WEI Assess PRC Guidance Gui	RAIN RAIN	Harvested STORM Volume Total Rain & Storm Volume	m3 m3 m3	4,447.890 6,451.810	3,380.265 4,903.185	3,879.585 5,627.465	2,680.560 3,888.240	3,022.200 4,383.800	3,005.775 4,359.975	3,143.745 4,560.105	3,544.515 5,141.435	3,656.205 5,303.445	4,641.705 6,732.945	4,408.470 6,394.630	4,644.990 6,737.710	44,455.905 64,484.745	2,680.560 3,888.240	44,455.905 64,484.745	7,371.241	
Assess WEI Assess WEI Assess PRC Assess CON Assess CON Assess DISI Asses	WELFARE WW	Rain Storage Projected Aerage Wastewater (m3) (Based approximately on 7 site staff and c. 26 visitiors / drivers per day)		6,000.000	3.500	3.500	3.500	6,000.000 3.500	3.500	6,000.000 3.500	6,000.000 3.500	6,000.000 3.500	3.500	3.500	6,000.000 3.500		nva	n/a	n/a	
 Www. Asses PRC. Asses PRC. Asses PRC. Asses PRC. Asses PRC. Asses CON Asses SISI Asses S	WELFARE WW	Projected Aerage Wastewater Projected Aerage Wastewater Projected Aerage Wastewater	m3/hour m3/sec l/sec	0.146	0.0000405	0.146 0.0000405 0.041	0.146 0.0000405 0.041	0.146 0.0000405 0.041	0.0000405 0.041	0.146 0.000405 0.041	0.146 0.0000405 0.041	0.146 0.0000405 0.041	0.146 0.0000405 0.041	0.146	0.146 0.0000405 0.041					
Asses FRC Asses CON Asses DIS Asses DIS <t< td=""><td>WWT (W) WWT (W) PROCESS WW</td><td>Constructed Wetland (Welfare) - Retention Time Constructed Wetland (Welfare) - Outfall Projected Aerage Wastewater (m3) (B&V)</td><td>Days Method m3</td><td>11.904 To WW Storag 1726.890</td><td>e To WW Storage</td><td>11.904 To WW Storage 1550.090</td><td>11.904 To WW Storage 1269.430</td><td>11.904 To WW Storage 1281.020</td><td>To WW Storage</td><td>11.904 To WW Storage 880.170</td><td>11.904 To WW Storage 1165.980</td><td>11.904 To WW Storage 1287.650</td><td>11.904 To WW Storage 1707.790</td><td>11.904 To WW Storag 1556.830</td><td>11.904 To WW Storag 1855.960</td><td></td><td></td><td></td><td></td><td>Provided by B&V</td></t<>	WWT (W) WWT (W) PROCESS WW	Constructed Wetland (Welfare) - Retention Time Constructed Wetland (Welfare) - Outfall Projected Aerage Wastewater (m3) (B&V)	Days Method m3	11.904 To WW Storag 1726.890	e To WW Storage	11.904 To WW Storage 1550.090	11.904 To WW Storage 1269.430	11.904 To WW Storage 1281.020	To WW Storage	11.904 To WW Storage 880.170	11.904 To WW Storage 1165.980	11.904 To WW Storage 1287.650	11.904 To WW Storage 1707.790	11.904 To WW Storag 1556.830	11.904 To WW Storag 1855.960					Provided by B&V
Asses CON Asses CON Asses CON Asses CON Asses CON Asses CON Asses CON Asses CON Asses CON Asses Picture Asses Dist Asses Dist Assessment Assess	PROCESS WW COMBINED WW	Projected Aerage Wastewater (m3/day) Projected Combined Aerage Wastewater (m3) (Welfare & Process)	m3/day	57.563 61.063	67.642	51.670 55.170	42.314 45.814	42.701 46.201		29.339 32.839	38.866 42.366	42.922 46.422	56.926 60.426	51.894 55.394	61.865					
Asses Simer Asses Collarce Guidance	COMBINED WW COMBINED WW COMBINED WW	Projected Combined Average Wastewater (m3/hour) Projected Combined Aerage Wastewater (m3/sec) Projected Combined Aerage Wastewater (l/sec) (Secondary	m3/hour m3/sec l/sec	2.544 0.0007067 0.707	2.964 0.0008234 0.823	2.299 0.0006385 0.639	1.909 0.0005303 0.530	1.925 0.0005347 0.535		1.368 0.0003801 0.380	1.765 0.0004903 0.490	1.934 0.0005373 0.537	2.518 0.0006994 0.699	2.308 0.0006411 0.641	2.724 0.0007565 0.757					
Asses DISC Asses HYD Asses	COMBINED WW	Axis) Wastewater Storage	m3	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000	1,500.000		n/a	n/a	n/a	
Asses Dist Asses Dist Asses Dist Asses Dist Asses Dist Asses Dist Asses Dist Asses Dist Asses HYD Asses HY	DISCHARGE	RESTRICT DISCHARGE RATE Coefficient Discharge Rate Discharge Rate	m3/hour m3/sec	1.00 2.544 0.0007067	2.964	1.00 2.299 0.0006385	0.50 0.954 0.0002651	0.50 0.963 0.0002674	0.922	0.684	0.50 0.883 0.0002452	0.50 0.967 0.0002686	2.518 0.0006994	2.308 0.0006411	0.0007565					
Asses Disk Asses Jink Asses HVG Asses HVG Calidance Guidance	DISCHARGE DISCHARGE	Discharge Rate Attenuation Rate	l/sec m3/hour	0.707	0.823	0.639	0.265	0.267	0.256	0.190 0.684	0.245	0.269 0.967	0.699	0.641	0.757					
Asses HYD Asses HYD Callarce Guidance	HYDROLOGY	Storage Capacity Storage Capacity HYDROtool Q95 for end of Catchment Node (l/sec)	hours days l/sec	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 0 14.000	#DIV/0! #DIV/0! 14.000	1571.561 65.482 14.000	1558.419 64.934 14.000	67.786 14.000	2192.515 91.355 14.000	1699.476 70.811 14.000	1551.000 64.625 14.000	#DIV/0! 14.000	#DIV/0! #DIV/0! 14.000	#DIV/0! #DIV/0! 14.000					
Assestructure Assessmert Ass	HYDROLOGY HYDROLOGY HYDROLOGY	Approximate catchment area upstream of DP Inferred Q95%ile [FIXED]at DP (m3/sec) Inferred Q95%ile [FIXED] at DP (l/sec)	% m3/sec l/sec	0.330	0.004620			0.330 0.004620 4.620	0.004620	0.330 0.004620 4.620	0.330 0.004620 4.620	0.330 0.004620 4.620	0.330 0.004620 4.620	0.330	0.0330 0.004620 0.4.620					
Guidance	HYDROLOGY HYDROLOGY	Inferred Q%ile / month [VARIABLE] at DP (m3/sec) Inferred Q%ile / month [VARIABLE] at DP (l/sec)	m3/sec l/sec	0.010000		0.007500 7.500	0.004620 4.620	0.003000 3.000		0.001000	0.002000 2.000	0.004620 4.620	0.007500 7.500	0.010000	0.010000					
Guidance				16.000	iactive Q95%ile,	Indicative Q/mo	onth, Long Term	Average Month	hly Rain, Predicte	ed Monthly Ave	erage Waste Wat	er	1.600							
Guidance				14.000	•							• •	1.400							
Guidance				12.000						-			1.200	Inferred	Q95%ile at DP (l/sec)					
Guidance				10.000 SPV Jg2 8.000				• •	-		- Antonio -	,	1.000 mdary Axis	Inferred	I Q%ile / month BLE] at DP					
Guidance				6.000	-	1	1			_	1-	-	0.600	(l/sec)						
Guidance				4.000	•	••-	-	· · · · · · · · · · · · · · · · · · ·	\checkmark		•	••	0.400		LTA (cm/month) dary Axis) K AIR)					
Guidance				0.000									0.200	Aerage	ed Combined Wastewater Secondary Axis)					
Guidance				0	1	2 3	4	5 6 N	7 Wonth	8 9	10	11 12	13	(,					
Assessmer Guidance	ninary Assimila	ative Capacity Assessment																		
Guidance	nce	Appendix C – Assimilative Capacity and Mass Balance Calculations		January	February	March	April	Мау	June	July	August	September	October	November	December	Unit			Para	nComment
Guidance Guidance	ment	Pollutant		BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD	BOD					
Guidance Gui	ice	Calculation 1 – Assimilative Capacity																		
Assessmer Guidance		This calculation is used to determine the capacity of the receiving waters to assimilate the effluent discharge in kg/day																		
Guidance Subance Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guidance Guidance Guidance Guidance Guidance Guidance Subance Assessmet As	ce	Formula 1 below may be used to determine assimilative capacit for the majority of chemical parameters e.g. BOD, suspended	у																	
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Asses	ment	solids etc. with the exception of toxic substances e.g. heavy metals in which case Formula 2 must be used Appropriate Formula		Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1	Formula 1					Screen heavy metals
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Cuidance Guidance Guidance Subance Assessmet Assessm	ice	Formula 1																		
Guidance Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Guidance Assessmer	ice	Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day																		
Guidance Guidance Assessmer Assessmer Assessmer Guidance Cuidance Sassessmer Assessmer Assessmer Assessmer Assessmer Assessmer	ce	Where: Cmax = maximum permissible concentration (EQS – 95%ile																		
Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Assessmer	ice ice	Cback = background upstream concentration (mg/l mean value F95 = the 95%ile flow in the river (m3/s) Note: (60x60x24)/1000 = 86.4																		
Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Assessmer As	sment	Environmental Quality Standard (EQS) The concentration of a particular pollutant or group of pollutants	3	5	5 5	5	5	5	5	5	5	5	5	E		mg/l				SW Regs Good Status 95%ile Baseline
Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Assessmer	ment	95%ile value Cmax = maximum permissible concentration (EQS – 95%ile value) (mg/l)		4	4	4	4	4	4	4	4	1	1	4	4	mg/l mg/l			BOD	
Assessmet Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmet Asses	sment	Cback = background upstream concentration (mg/l mean value F95 = the 95%ile flow in the river (m3/s)	9	0.010		1 0.008	1 0.005	0.003	0.002	1 0.001	1 0.002	1 0.005	1 0.008	0.010	0.010	mg/l m3/sec				Assume 95%ile value Assume 95%ile value
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Assessmer Guidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Cuidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Cuidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Cuidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Cuidance	sment	Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day		2.592	2.592	1.944	1.197504	0.7776	0.5184	0.2592	0.5184	1.197504	1.944	2.592		kg/day			BOD	
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmet Assessmet Assessmet Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmet Assessmet Assessmet Assessmet Guidance Guidance Guidance Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guidance Guidance Assessmet Assessm	ice ice	Formula 2 Assimilative capacity = (Cmax – Cback) x DWF x 86.4 kg/day								_										
Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Cuidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Cuidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Cuidance Guidance Guidance Guidance Guidance Guidance Cuidance	ce																			
Guidance Guidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer	ice	where: Cmax = maximum permissible concentration (EQS - 95%ile value) (mg/l) Charles a concentration (mg/l)																		
Guidance Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Asse	ce	Cback = background upstream concentration (mg/l mean value DWF = dry weather flow in the river (m3/s)	:)																	
Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Ass	ICE	Note: (60x60x24)/1000 = 86.4 Environmental Quality Standard (EQS) The concentration of a particular pollutant or group of pollutants	3													mg/l			BOD	Salmonid Regs
Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Ass		in a receiving water which should not be exceeded in order to protect human health and the																		
Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Cuidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance		environment. 95%ile value = Assume low e.g. BOD Cmax = maximum permissible concentration (EQS – 95%ile) 0	0	0	0	0	0	0	0	0			mg/l mg/l			BOD	
Assessmer Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance		value) (mg/l) Cback = background upstream concentration (mg/l mean value	:)	0	0 0	0	0	0	0	0	0	0	0	(mg/l				Assume 95%ile value
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guidan		F95 = the 95%ile flow in the river (m3/s) Assimilative capacity = (Cmax – Cback) x F95 x 86.4 kg/day		C	0 0	0	0	0	0	0	0	0	0	(m3/sec kg/day			BOD	Assume 95%ile value
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmei Assessmei Assessmei Assessmei Assessmei Assessmei Assessmei Guidance Guida		Once the assimilative capacity of the receiving water has been	-																	
Guidance Guidance Guidance Guidance Guidance Guidance Guidance Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guida		established, the percentage of the assimilative capacity that will be used by the discharge may be calculated using the effluent load information.																		
Guidance Guidance Assessme Assessme Assessme Assessme Assessme Assessme Assessme Assessme Assessme Assessme Assessme Assessme Cuidance Guidance Guidance Guidance Guidance Guidance Guidance		The effluent load may be determined using the following formula	a:																	
Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guidance Guidance Guidance Guidance		Effluent flow x effluent concentration / 1000 = effluent load																		
Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Assessmer Guidance Guidance Guidance Guidance Guidance Guidance	ment	(kg/day) Wastewater Loading																		
Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guidance Guidance Guidance Guidance Guidance	sment sment	Effluent flow (Dicharge Rate) Effluent flow Effluent concentration		0.70674769		0.63853781	0.26512924	0.26736497	0.2561169	0.19004051	0.24517361	0.2686439	0.69937886	0.64113812	0.75654321	l/sec mg/l			BOD	
Guidance Assessmet Assessmet Assessmet Assessmet Assessmet Assessmet Guidance Guidance Guidance Guidance Guidance	ment ment	Effluent Load Effluent Load Effluent Load		610,630.00	8.23406636 711,423.33 0.7114233	551,696.67	229,071.67	231,003.33	221,285.00	164,195.00	211,830.00	232,108.33	604,263.33	553,943.33		mg/day			BOD BOD BOD	
Assessmer Assessmer Assessmer Assessmer Assessme Guidance Guidance Guidance Guidance Guidance Guidance Guidance	ice iment	Assimilative Capacity Assessment Result Assimilative Capacity (AC) = (Cmax – Cback) x F95 x 86.4		2.592		1.944		0.7776		0.2592	0.5184	1.197504	1.944	2.592		kg/day			BOD	
Assessin Assessing Guidance Guidance Guidance Guidance Guidance Guidance	ment	kg/day Effluent Load (EL)		0.6106300	0.7114233	0.5516967	0.2290717	0.2310033	0.2212850	0.1641950	0.2118300	0.2321083	0.6042633	0.5539433	0.6536533	kg/day			BOD	
Assessme Guidance Guidance Guidance Guidance Guidance Guidance		AC - EL Percentage of the assimilative capacity that will be used by the discharge		1.98137 23.6%	1.88057667 27.4%			0.54659667 29.7%		0.095005 63.3%	0.30657 40.9%	0.96539567 19.4%							BOD	
Guidance Guidance Guidance Guidance Guidance Guidance	ssment	ACA Result		PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS					
Guidance Guidance Guidance Guidance Guidance	ice																			
Guidance	ice	Calculation 2 – Mass Balance This formula is used to calculate the concentration of a	1																	
Guidance	ice	parameter in the receiving water downstream of the discharge. This downstream concentration may then be compared directly with the water quality standard (EQS) to determine whether the																		
Guidance	ice	discharge will cause an exceedance of the EQS value.																		
Guidance	ice	Mass balance Equation:																		
Guidance	ice ice ice ice ice	$T = \frac{FC + fc}{F + f}$																		
Guidance	ice ice ice ice ice	F + f																		
Guidance Guidance	ce ce ce ce ce		-																	
Guidance	ice ice ice ice ice ice ice	where: • F is the river flow upstream of the discharge (95%ile flow m3(sec):																		
Guidance Guidance	ice ice ice ice ice ice ice ice ice	F is the river flow upstream of the discharge (95%ile flow m3/sec); C is the concentration of pollutant in the river upstream of the discharge (mean concentration in mg/l);																		
Guidance Guidance	ice ice ice ice ice ice ice ice	 F is the river flow upstream of the discharge (95% left flow m3/sec); C is the concentration of pollutant in the river upstream of the discharge (mean concentration in mg/l); F is the flow of the discharge (maximum flow in m3/sec); c is the maximum concentration of pollutant in the discharge (mg/l); 																		
Assessmer Assessmer	ice	 F is the river flow upstream of the discharge (95%ile flow m3/sec); C is the concentration of pollutant in the river upstream of the discharge (mean concentration in mg/); I is the flow of the discharge (maximum flow in m3/sec); c is the maximum concentration of pollutant in the discharge 																		
Assessmer Assessmer Assessn	cce	F is the river flow upstream of the discharge (95% liel flow m3/sec); C is the concentration of pollutant in the river upstream of the discharge (mean concentration in mg/l); F is the flow of the discharge (maximum flow in m3/sec); • c is the concentration of pollutant in the discharge (mg/l); • T is the concentration of pollutant downstream of the discharge. F (95% liel flow m3/sec); C (mean background concentration in mg/l);		0.01	1	1	1	0.003	1	0.001	0.002	0.00462	0.0075	0.01	1	m3/sec mg/l			BOD	Linked to abve
Assessn	cce	F is the river flow upsteam of the discharge (95%ile flow mStee); C is the concentration of pollutant in the river upsteam of the discharge (mean concentration in mg/l); - is the flow of the discharge (maximum flow in m3/sec); - c is the maximum concentration of pollutant in the discharge (mg/l); - T is the concentration of pollutant downstream of the discharge. F (55%ile flow m3/sec);		1	1 0.00082341 0 10	1 0.00063854 10	1 0.00026513 10	1	1 0.00025612 10	1	1	1	1 0.00069938 10	1	1 0.00075654 0 10	mg/l m3/sec mg/l				Linked to abve 3.0 m3/hour Linked to abve

RSK